Electromagnetic ULF/ELF oscillations caused by the eruption of the Tonga volcano

IF 0.9 Q4 GEOCHEMISTRY & GEOPHYSICS
V. Martines-Bedenko, V. Pilipenko, K. Shiokawa, R. Akbashev
{"title":"Electromagnetic ULF/ELF oscillations caused by the eruption of the Tonga volcano","authors":"V. Martines-Bedenko, V. Pilipenko, K. Shiokawa, R. Akbashev","doi":"10.12737/stp-91202306","DOIUrl":null,"url":null,"abstract":"The eruption of the Tonga volcano on January 13 and 15, 2022 and related intense lightning activity led to the excitation of a number of specific electromagnetic oscillations in different frequency ranges. We examine properties of these oscillations, using data from magnetometers of various types located in Kamchatka and in the Pacific region. We confirmed that there might have been a geomagnetic response to the formation of an acoustic resonance between the Earth surface and the ionosphere: localized harmonic oscillations with a frequency 3.5–4.0 mHz, which lasted for ~1.5 hr, were detected ~15 min after the beginning of the eruption at distance of ~800 km. An increase was observed in the intensity of the Schumann resonance at stations in the Far East. Broadband emission stimulated by intense volcanic lightning was detected to occur in the Pc1 range (2–5 Hz). The emission presumably results from the excitation of the magnetosonic waveguide in the upper ionosphere by lightning activity.","PeriodicalId":43869,"journal":{"name":"Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar-Terrestrial Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12737/stp-91202306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

The eruption of the Tonga volcano on January 13 and 15, 2022 and related intense lightning activity led to the excitation of a number of specific electromagnetic oscillations in different frequency ranges. We examine properties of these oscillations, using data from magnetometers of various types located in Kamchatka and in the Pacific region. We confirmed that there might have been a geomagnetic response to the formation of an acoustic resonance between the Earth surface and the ionosphere: localized harmonic oscillations with a frequency 3.5–4.0 mHz, which lasted for ~1.5 hr, were detected ~15 min after the beginning of the eruption at distance of ~800 km. An increase was observed in the intensity of the Schumann resonance at stations in the Far East. Broadband emission stimulated by intense volcanic lightning was detected to occur in the Pc1 range (2–5 Hz). The emission presumably results from the excitation of the magnetosonic waveguide in the upper ionosphere by lightning activity.
汤加火山喷发引起的电磁极低频振荡
2022年1月13日和15日汤加火山爆发以及相关的强烈闪电活动导致了不同频率范围内的一些特定电磁振荡的激发。我们利用堪察加半岛和太平洋地区各种类型的磁力计的数据,研究了这些振荡的性质。我们证实,地球表面和电离层之间的声学共振形成可能有地磁反应:在喷发开始约15分钟后,在约800公里的距离处检测到频率为3.5–4.0 mHz的局部谐波振荡,持续约1.5小时。在远东的台站观测到舒曼共振的强度增加。强烈火山闪电刺激的宽带发射被检测到发生在Pc1范围内(2-5 Hz)。这种发射可能是由于闪电活动对电离层上部磁声波波导的激发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar-Terrestrial Physics
Solar-Terrestrial Physics GEOCHEMISTRY & GEOPHYSICS-
CiteScore
1.50
自引率
9.10%
发文量
38
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信