Constructivist-based experiential learning: A case study of student-centered and design-centric unit operation distillation laboratory

IF 3.5 2区 教育学 Q1 EDUCATION, SCIENTIFIC DISCIPLINES
Mingqian John Zhang, Eric Croiset, Marios Ioannidis
{"title":"Constructivist-based experiential learning: A case study of student-centered and design-centric unit operation distillation laboratory","authors":"Mingqian John Zhang,&nbsp;Eric Croiset,&nbsp;Marios Ioannidis","doi":"10.1016/j.ece.2022.09.002","DOIUrl":null,"url":null,"abstract":"<div><p><span>This paper presents the rationale for incorporating engineering design into project-based laboratory learning. To ensure an effective and efficient pedagogy for the new laboratory format, we placed the emphasis of the pedagogical framework on constructivist learning for deep laboratory learning, and integrated experiential learning cycle with cyclic engineering design to formulate a sequential instruction and formative assessment methodology. The implementation of the pedagogy was exemplified using a case study of a concrete distillation design consisting of conceptualizing the design, reasoning the adequacy and experiment-based validation of the design correlations, and verifying the final design as per experimental observations. The impact of the novel lab format on student </span>learning experience was surveyed and compared to that of a traditional laboratory. The survey results revealed that the project-based laboratory with design resulted in an improved learning experience in addressing high-level learning outcomes and engineering skills. Evidence of the survey also suggested that the sequential instruction and formative assessment methodology was effective with every stage of the experiential learning and formative assessment essential for the successful and efficient implementation of the project-based laboratory learning.</p></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":"41 ","pages":"Pages 22-31"},"PeriodicalIF":3.5000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Education for Chemical Engineers","FirstCategoryId":"95","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1749772822000227","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents the rationale for incorporating engineering design into project-based laboratory learning. To ensure an effective and efficient pedagogy for the new laboratory format, we placed the emphasis of the pedagogical framework on constructivist learning for deep laboratory learning, and integrated experiential learning cycle with cyclic engineering design to formulate a sequential instruction and formative assessment methodology. The implementation of the pedagogy was exemplified using a case study of a concrete distillation design consisting of conceptualizing the design, reasoning the adequacy and experiment-based validation of the design correlations, and verifying the final design as per experimental observations. The impact of the novel lab format on student learning experience was surveyed and compared to that of a traditional laboratory. The survey results revealed that the project-based laboratory with design resulted in an improved learning experience in addressing high-level learning outcomes and engineering skills. Evidence of the survey also suggested that the sequential instruction and formative assessment methodology was effective with every stage of the experiential learning and formative assessment essential for the successful and efficient implementation of the project-based laboratory learning.

基于建构主义的体验式学习:以学生为中心与以设计为中心的单元操作蒸馏实验室个案研究
本文介绍了将工程设计纳入基于项目的实验室学习的基本原理。为了确保新实验室模式的有效和高效的教学方法,我们将教学框架的重点放在深度实验室学习的建构主义学习上,并将体验式学习周期与循环工程设计相结合,以制定顺序教学和形成性评估方法。该教学法的实施通过一个具体蒸馏设计的案例研究来举例说明,该设计包括概念化设计,推理设计相关性的充分性和基于实验的验证,并根据实验观察验证最终设计。调查了新型实验室形式对学生学习体验的影响,并与传统实验室进行了比较。调查结果显示,基于项目的实验室设计在解决高水平的学习成果和工程技能方面改善了学习体验。调查的证据还表明,顺序教学和形成性评估方法在体验式学习和形成性评估的每个阶段都是有效的,这对于成功和有效地实施基于项目的实验室学习至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.80
自引率
17.90%
发文量
30
审稿时长
31 days
期刊介绍: Education for Chemical Engineers was launched in 2006 with a remit to publisheducation research papers, resource reviews and teaching and learning notes. ECE is targeted at chemical engineering academics and educators, discussing the ongoingchanges and development in chemical engineering education. This international title publishes papers from around the world, creating a global network of chemical engineering academics. Papers demonstrating how educational research results can be applied to chemical engineering education are particularly welcome, as are the accounts of research work that brings new perspectives to established principles, highlighting unsolved problems or indicating direction for future research relevant to chemical engineering education. Core topic areas: -Assessment- Accreditation- Curriculum development and transformation- Design- Diversity- Distance education-- E-learning Entrepreneurship programs- Industry-academic linkages- Benchmarking- Lifelong learning- Multidisciplinary programs- Outreach from kindergarten to high school programs- Student recruitment and retention and transition programs- New technology- Problem-based learning- Social responsibility and professionalism- Teamwork- Web-based learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信