Jordan Schupbach, Elliott Pryor, Kyle Webster, John W. Sheppard
{"title":"A Risk-Based Approach to Prognostics and Health Management Combining Bayesian Networks and Continuous-Time Bayesian Networks","authors":"Jordan Schupbach, Elliott Pryor, Kyle Webster, John W. Sheppard","doi":"10.1109/MIM.2023.10208251","DOIUrl":null,"url":null,"abstract":"Performing general prognostics and health management (PHM), especially in electronic systems, continues to present significant challenges. The low availability of failure data makes learning generalized models difficult and constructing generalized models during the design phase often requires a level of understanding of the failure mechanisms that elude the designers. In this paper, we present a generalized approach to PHM based on two types of probabilistic models, Bayesian Networks (BNs) and Continuous-Time Bayesian Networks (CTBNs), and we pose the PHM problem from the perspective of risk mitigation rather than failure prediction. This paper also constitutes an extension of previous work where we proposed this framework initially [1]. In this extended version, we also provide a comparison of exact and approximate sample-based inference for CTBNs to provide practical guidance on conducting inference using the proposed framework.","PeriodicalId":55025,"journal":{"name":"IEEE Instrumentation & Measurement Magazine","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Instrumentation & Measurement Magazine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/MIM.2023.10208251","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Performing general prognostics and health management (PHM), especially in electronic systems, continues to present significant challenges. The low availability of failure data makes learning generalized models difficult and constructing generalized models during the design phase often requires a level of understanding of the failure mechanisms that elude the designers. In this paper, we present a generalized approach to PHM based on two types of probabilistic models, Bayesian Networks (BNs) and Continuous-Time Bayesian Networks (CTBNs), and we pose the PHM problem from the perspective of risk mitigation rather than failure prediction. This paper also constitutes an extension of previous work where we proposed this framework initially [1]. In this extended version, we also provide a comparison of exact and approximate sample-based inference for CTBNs to provide practical guidance on conducting inference using the proposed framework.
期刊介绍:
IEEE Instrumentation & Measurement Magazine is a bimonthly publication. It publishes in February, April, June, August, October, and December of each year. The magazine covers a wide variety of topics in instrumentation, measurement, and systems that measure or instrument equipment or other systems. The magazine has the goal of providing readable introductions and overviews of technology in instrumentation and measurement to a wide engineering audience. It does this through articles, tutorials, columns, and departments. Its goal is to cross disciplines to encourage further research and development in instrumentation and measurement.