{"title":"Effects of EZH2 inhibitor DZNeP on osteogenic differentiation of periodontal ligament stem cells","authors":"Dayong Liu, L. Lan, Ruiqi Liu","doi":"10.3760/CMA.J.ISSN.1673-4181.2019.03.002","DOIUrl":null,"url":null,"abstract":"Objective \nTo observe the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and to investigate the epigenetic regulation of EZH2 inhibitor DZNeP on osteogenic differentiation of hPDLSCs. \n \n \nMethods \nThe hPDLSCs were isolated and cultured, and their proliferation under different concentrations of DZNeP (0, 1, 2, 5 and 10 μmol/L) was detected by MTT. The effects of DZNeP on osteogenic differentiation of hPDLSCs were observed by alkaline phosphatase (ALP) staining and alizarin red staining. The effect of DZNeP on the trimethylation of histone H3K27 in hPDLSCs was detected by immunofluorescence staining. \n \n \nResults \nCompared with the control group, the proliferation of hPDLSCs after 1, 2, 5 and 10 μmol/L DZNeP treatment for 48 h was significantly decreased, respectively (all P<0.05), and it was concentration-dependent. The result of ALP staining and alizarin red staining showed that DZNeP could promote the expression of early osteogenic markers ALP and the formation of advanced calcified nodules of hPDLSCs. The immunofluorescence staining result showed that the trimethylation fluorescence intensity of histone H3K27 was significantly decreased in the DZNeP group compared with the control group. \n \n \nConclusions \nAs an EZH2 inhibitor, DZNeP can inhibit the proliferation of hPDLSCs and promote the differentiation of hPDLSCs into osteoblasts in vitro, suggesting that DZNeP can be used as a potential small molecule drug for the treatment of periodontitis. \n \n \nKey words: \nEpigenetic regulation; EZH2; DZNeP; Human periodontal ligament stem cells; Osteogenic differentiation","PeriodicalId":61751,"journal":{"name":"国际生物医学工程杂志","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"国际生物医学工程杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3760/CMA.J.ISSN.1673-4181.2019.03.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
To observe the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and to investigate the epigenetic regulation of EZH2 inhibitor DZNeP on osteogenic differentiation of hPDLSCs.
Methods
The hPDLSCs were isolated and cultured, and their proliferation under different concentrations of DZNeP (0, 1, 2, 5 and 10 μmol/L) was detected by MTT. The effects of DZNeP on osteogenic differentiation of hPDLSCs were observed by alkaline phosphatase (ALP) staining and alizarin red staining. The effect of DZNeP on the trimethylation of histone H3K27 in hPDLSCs was detected by immunofluorescence staining.
Results
Compared with the control group, the proliferation of hPDLSCs after 1, 2, 5 and 10 μmol/L DZNeP treatment for 48 h was significantly decreased, respectively (all P<0.05), and it was concentration-dependent. The result of ALP staining and alizarin red staining showed that DZNeP could promote the expression of early osteogenic markers ALP and the formation of advanced calcified nodules of hPDLSCs. The immunofluorescence staining result showed that the trimethylation fluorescence intensity of histone H3K27 was significantly decreased in the DZNeP group compared with the control group.
Conclusions
As an EZH2 inhibitor, DZNeP can inhibit the proliferation of hPDLSCs and promote the differentiation of hPDLSCs into osteoblasts in vitro, suggesting that DZNeP can be used as a potential small molecule drug for the treatment of periodontitis.
Key words:
Epigenetic regulation; EZH2; DZNeP; Human periodontal ligament stem cells; Osteogenic differentiation