{"title":"Recent development of intake devices for atmosphere-breathing electric propulsion system","authors":"Jianjun Wu , Peng Zheng , Yu Zhang , Haibin Tang","doi":"10.1016/j.paerosci.2022.100848","DOIUrl":null,"url":null,"abstract":"<div><p><span>Increasing interest in development of very low Earth orbit<span> (VLEO) has attracted more and more researchers to study atmosphere-breathing electric propulsion (ABEP) system in past several decades. This system can use rarefied atmospheric particles as the propellant of electric </span></span>thrusters<span>, and maintain a long lifetime mission without carrying any propellant from ground. As the key component of system, intake device can realize the collection and compression of atmospheric particles within limited frontal area, which determines the performance of whole ABEP system. This review summarizes the previous studies to develop intake devices, evaluates the corresponding performance and understands the model involved, including atmosphere model, flow physic model and so on. In addition, several continued researches for intake device are also presented, including ground experiment technologies, intake surface material development, space compressor and liquefaction technology. Wherever possible, comments have been provided to provide useful reference to researchers engaged in intake device for ABEP system.</span></p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"133 ","pages":"Article 100848"},"PeriodicalIF":11.5000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Aerospace Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376042122000409","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 7
Abstract
Increasing interest in development of very low Earth orbit (VLEO) has attracted more and more researchers to study atmosphere-breathing electric propulsion (ABEP) system in past several decades. This system can use rarefied atmospheric particles as the propellant of electric thrusters, and maintain a long lifetime mission without carrying any propellant from ground. As the key component of system, intake device can realize the collection and compression of atmospheric particles within limited frontal area, which determines the performance of whole ABEP system. This review summarizes the previous studies to develop intake devices, evaluates the corresponding performance and understands the model involved, including atmosphere model, flow physic model and so on. In addition, several continued researches for intake device are also presented, including ground experiment technologies, intake surface material development, space compressor and liquefaction technology. Wherever possible, comments have been provided to provide useful reference to researchers engaged in intake device for ABEP system.
期刊介绍:
"Progress in Aerospace Sciences" is a prestigious international review journal focusing on research in aerospace sciences and its applications in research organizations, industry, and universities. The journal aims to appeal to a wide range of readers and provide valuable information.
The primary content of the journal consists of specially commissioned review articles. These articles serve to collate the latest advancements in the expansive field of aerospace sciences. Unlike other journals, there are no restrictions on the length of papers. Authors are encouraged to furnish specialist readers with a clear and concise summary of recent work, while also providing enough detail for general aerospace readers to stay updated on developments in fields beyond their own expertise.