{"title":"Humanized mouse models for preclinical evaluation of HIV cure strategies.","authors":"Sally Fraker, Benjamin Atkinson, Alonso Heredia","doi":"10.24875/AIDSRev.22000013","DOIUrl":null,"url":null,"abstract":"<p><p>Although the world is currently focused on the COVID-19 pandemic, HIV/AIDS remains a significant threat to public health. To date, the HIV/AIDS pandemic has claimed the lives of over 36 million people, while nearly 38 million people are currently living with the virus. Despite the undeniable success of antiretroviral therapy (ART) in controlling HIV, the medications are not curative. Soon after initial infection, HIV integrates into the genome of infected cells as a provirus, primarily, within CD4+ T lymphocytes and tissue macrophages. When not actively transcribed, the provirus is referred to as a latent reservoir because it is hidden to the immune system and ART. Following ART discontinuation, HIV may emerge from the replication-competent proviruses and resumes the infection of healthy cells. Thus, these latent reservoirs are a major obstacle to an HIV cure, and their removal remains a priority. A vital aspect in the development of curative therapies is the demonstration of efficacy in an animal model, such as the humanized mouse model. Therefore, optimization, standardization, and validation of the humanized mouse model are a priority. The purpose of this review article is to provide an update on existing humanized mouse models, highlighting the advantages and disadvantages of each as they pertain to HIV cure studies and to review the approaches to curative therapies that are under investigation.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9643647/pdf/nihms-1843095.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.24875/AIDSRev.22000013","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Although the world is currently focused on the COVID-19 pandemic, HIV/AIDS remains a significant threat to public health. To date, the HIV/AIDS pandemic has claimed the lives of over 36 million people, while nearly 38 million people are currently living with the virus. Despite the undeniable success of antiretroviral therapy (ART) in controlling HIV, the medications are not curative. Soon after initial infection, HIV integrates into the genome of infected cells as a provirus, primarily, within CD4+ T lymphocytes and tissue macrophages. When not actively transcribed, the provirus is referred to as a latent reservoir because it is hidden to the immune system and ART. Following ART discontinuation, HIV may emerge from the replication-competent proviruses and resumes the infection of healthy cells. Thus, these latent reservoirs are a major obstacle to an HIV cure, and their removal remains a priority. A vital aspect in the development of curative therapies is the demonstration of efficacy in an animal model, such as the humanized mouse model. Therefore, optimization, standardization, and validation of the humanized mouse model are a priority. The purpose of this review article is to provide an update on existing humanized mouse models, highlighting the advantages and disadvantages of each as they pertain to HIV cure studies and to review the approaches to curative therapies that are under investigation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.