Experimental study on the towing stability of a towed underwater object

IF 2.3 3区 工程技术 Q2 ENGINEERING, MARINE
Jongyeol Park , Shin Hyung Rhee , Jong-Beom Im , Ba Han Ji , Seung Jin Lee
{"title":"Experimental study on the towing stability of a towed underwater object","authors":"Jongyeol Park ,&nbsp;Shin Hyung Rhee ,&nbsp;Jong-Beom Im ,&nbsp;Ba Han Ji ,&nbsp;Seung Jin Lee","doi":"10.1016/j.ijnaoe.2023.100539","DOIUrl":null,"url":null,"abstract":"<div><p>The towing stability of a towed underwater object was investigated through towing tank model tests. Three types of towing cables were employed, and the attitude of a towed object was measured by an inertial measurement unit. The towed object's geometry and the position of the towing point were fixed. The lower center of gravity enabled the positive pitch moment due to the increased moment arm and reduced the fluctuation of pitch motion. Three types of appendages, which were vanes, a streamlined bracket, and a spoiler, were employed. The magnitude of the damping force by the vanes and the resulting towing stability depended on the vanes' exposed area to the inflow. The damping force by the streamlined bracket enhanced the pitch stability. On the other hand, the spoiler deteriorated the towing stability as the tilted spoiler resulted in a stall and thereby nonlinear and unfavorable damping force.</p></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"15 ","pages":"Article 100539"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678223000286","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

Abstract

The towing stability of a towed underwater object was investigated through towing tank model tests. Three types of towing cables were employed, and the attitude of a towed object was measured by an inertial measurement unit. The towed object's geometry and the position of the towing point were fixed. The lower center of gravity enabled the positive pitch moment due to the increased moment arm and reduced the fluctuation of pitch motion. Three types of appendages, which were vanes, a streamlined bracket, and a spoiler, were employed. The magnitude of the damping force by the vanes and the resulting towing stability depended on the vanes' exposed area to the inflow. The damping force by the streamlined bracket enhanced the pitch stability. On the other hand, the spoiler deteriorated the towing stability as the tilted spoiler resulted in a stall and thereby nonlinear and unfavorable damping force.

拖曳水下物体拖曳稳定性的实验研究
通过拖曳槽模型试验,研究了拖曳水下物体的拖曳稳定性。采用三种类型的拖曳电缆,并通过惯性测量单元测量拖曳物体的姿态。被拖物体的几何形状和拖曳点的位置是固定的。较低的重心,由于力臂增大,使俯仰力矩为正,减小了俯仰运动的波动。三种类型的附件,即叶片,流线型支架和扰流板,被采用。由叶片产生的阻尼力的大小和拖曳稳定性取决于叶片对流入的暴露面积。流线型支架的阻尼力增强了俯仰稳定性。另一方面,由于倾斜的扰流板导致失速,从而产生非线性和不利的阻尼力,扰流板恶化了拖曳稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
4.50%
发文量
62
审稿时长
12 months
期刊介绍: International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信