Low Latency SC Decoder Architecture for Interleaved Polar Codes

IF 0.5 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
N. Jali, P. Muralidhar, S. Patri
{"title":"Low Latency SC Decoder Architecture for Interleaved Polar Codes","authors":"N. Jali, P. Muralidhar, S. Patri","doi":"10.13164/re.2022.0398","DOIUrl":null,"url":null,"abstract":". Interleaved polar (I-Polar) codes, a new facet of polar codes to achieve better channel capacity, is designed by placing the interleaver and deinterleaver blocks midway between the stages of the polar codes. Low latency hardware optimization makes their implementation even more suitable for ultra-reliable low latency applications. This study pro-poses an optimal hardware design for low latency interleaved polar codes by reframing the last stage of the interleaved successive cancellation decoder. A high-speed adder-subtractor is used to reduce the latency further, thus increasing the speed of operation. Interleaving data in the proposed polar codes augment BER performance compared to conventional (n, k) polar codes. The proposed I-Polar codes are synthesized using Synopsys design compiler (SDC) in CMOS 65-nm technology. Results show that the latency is reduced by 50.5% on average compared to the conventional polar codes as high-speed adder and merged processing elements are used. Moreover, the average gate count and power are reduced by 14% and 40.56%, respectively.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.13164/re.2022.0398","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

. Interleaved polar (I-Polar) codes, a new facet of polar codes to achieve better channel capacity, is designed by placing the interleaver and deinterleaver blocks midway between the stages of the polar codes. Low latency hardware optimization makes their implementation even more suitable for ultra-reliable low latency applications. This study pro-poses an optimal hardware design for low latency interleaved polar codes by reframing the last stage of the interleaved successive cancellation decoder. A high-speed adder-subtractor is used to reduce the latency further, thus increasing the speed of operation. Interleaving data in the proposed polar codes augment BER performance compared to conventional (n, k) polar codes. The proposed I-Polar codes are synthesized using Synopsys design compiler (SDC) in CMOS 65-nm technology. Results show that the latency is reduced by 50.5% on average compared to the conventional polar codes as high-speed adder and merged processing elements are used. Moreover, the average gate count and power are reduced by 14% and 40.56%, respectively.
用于交错极性码的低延迟SC解码器结构
交错极性(I-polar)码是极性码的一个新方面,用于实现更好的信道容量,它是通过将交织器和去交织器块放置在极性码各级之间来设计的。低延迟硬件优化使其实现更加适合超可靠的低延迟应用程序。本研究通过重构交错连续消除解码器的最后一级,提出了一种低延迟交错极性码的最佳硬件设计。高速加法器-减法器用于进一步减少延迟,从而提高操作速度。与传统的(n,k)极性码相比,所提出的极性码中的交织数据增强了BER性能。所提出的I-Polar码是使用Synopsys设计编译器(SDC)在CMOS 65nm技术中合成的。结果表明,由于使用了高速加法器和合并处理元件,与传统的极性码相比,延迟平均减少了50.5%。此外,平均门计数和功率分别降低了14%和40.56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radioengineering
Radioengineering 工程技术-工程:电子与电气
CiteScore
2.00
自引率
9.10%
发文量
0
审稿时长
5.7 months
期刊介绍: Since 1992, the Radioengineering Journal has been publishing original scientific and engineering papers from the area of wireless communication and application of wireless technologies. The submitted papers are expected to deal with electromagnetics (antennas, propagation, microwaves), signals, circuits, optics and related fields. Each issue of the Radioengineering Journal is started by a feature article. Feature articles are organized by members of the Editorial Board to present the latest development in the selected areas of radio engineering. The Radioengineering Journal makes a maximum effort to publish submitted papers as quickly as possible. The first round of reviews should be completed within two months. Then, authors are expected to improve their manuscript within one month. If substantial changes are recommended and further reviews are requested by the reviewers, the publication time is prolonged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信