{"title":"Barriers to implementation of energy-efficient technologies in building construction projects — Results from a Swedish case study","authors":"Jakob Carlander , Patrik Thollander","doi":"10.1016/j.resenv.2022.100097","DOIUrl":null,"url":null,"abstract":"<div><p>About 12% of the EU’s greenhouse gas emissions derive from construction of and energy use in buildings. To decrease energy use in buildings, more energy-efficient technologies must be implemented. However, there are barriers to the implementation of energy-efficient technologies. In this study, interviews were conducted with different stakeholders within a city district development project to find barriers towards the implementation of energy-efficient technologies in buildings. First, an investigation of barrier theory followed by three pre-interviews was conducted, which helped in forming questions for the interview study, which involved a total of 18 respondents. The respondents were from the client, facility manager, developer, consultants, project planners, contractor, and the local energy supplier. The barriers mentioned in the interviews were connected to different phases of a building project. There is a scarcity of studies where barriers in various phases of the construction process are explored. In conclusion, the most frequently mentioned barriers were connected to the <em>Planning Program</em> phase and the <em>Project Planning</em> phase. Two new barrier categories are suggested: <em>Lack of Knowledge</em> and <em>Fear</em>. The most prominent barriers to implementation of energy-efficient technologies were <em>Inertia, Risk, Access to Capital</em> and <em>Lack of Knowledge</em>. To increase the implementation of energy-efficient technologies in buildings, knowledge needs to be increased throughout the whole industry, and stakeholders need to step out of their comfort zone and not always do as they have done before. A key policy implication is the importance of capacity building in the early phases of the building process.</p></div>","PeriodicalId":34479,"journal":{"name":"Resources Environment and Sustainability","volume":"11 ","pages":"Article 100097"},"PeriodicalIF":12.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Environment and Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266691612200041X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
About 12% of the EU’s greenhouse gas emissions derive from construction of and energy use in buildings. To decrease energy use in buildings, more energy-efficient technologies must be implemented. However, there are barriers to the implementation of energy-efficient technologies. In this study, interviews were conducted with different stakeholders within a city district development project to find barriers towards the implementation of energy-efficient technologies in buildings. First, an investigation of barrier theory followed by three pre-interviews was conducted, which helped in forming questions for the interview study, which involved a total of 18 respondents. The respondents were from the client, facility manager, developer, consultants, project planners, contractor, and the local energy supplier. The barriers mentioned in the interviews were connected to different phases of a building project. There is a scarcity of studies where barriers in various phases of the construction process are explored. In conclusion, the most frequently mentioned barriers were connected to the Planning Program phase and the Project Planning phase. Two new barrier categories are suggested: Lack of Knowledge and Fear. The most prominent barriers to implementation of energy-efficient technologies were Inertia, Risk, Access to Capital and Lack of Knowledge. To increase the implementation of energy-efficient technologies in buildings, knowledge needs to be increased throughout the whole industry, and stakeholders need to step out of their comfort zone and not always do as they have done before. A key policy implication is the importance of capacity building in the early phases of the building process.