Privacy Amplification and Decoupling Without Smoothing

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Frédéric Dupuis
{"title":"Privacy Amplification and Decoupling Without Smoothing","authors":"Frédéric Dupuis","doi":"10.1109/TIT.2023.3301812","DOIUrl":null,"url":null,"abstract":"We prove an achievability result for privacy amplification and decoupling in terms of the sandwiched Rényi entropy of order \n<inline-formula> <tex-math>$\\alpha \\in (1,2]$ </tex-math></inline-formula>\n; this extends previous results which worked for \n<inline-formula> <tex-math>$\\alpha =2$ </tex-math></inline-formula>\n. The fact that this proof works for \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n close to 1 means that we can bypass the smooth min-entropy in the many applications where the bound comes from the fully quantum AEP or entropy accumulation, and carry out the whole proof using the Rényi entropy, thereby easily obtaining an error exponent for the final task. This effectively replaces smoothing, which is a difficult high-dimensional optimization problem, by an optimization problem over a single real parameter \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"69 12","pages":"7784-7792"},"PeriodicalIF":2.2000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10232924/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 19

Abstract

We prove an achievability result for privacy amplification and decoupling in terms of the sandwiched Rényi entropy of order $\alpha \in (1,2]$ ; this extends previous results which worked for $\alpha =2$ . The fact that this proof works for $\alpha $ close to 1 means that we can bypass the smooth min-entropy in the many applications where the bound comes from the fully quantum AEP or entropy accumulation, and carry out the whole proof using the Rényi entropy, thereby easily obtaining an error exponent for the final task. This effectively replaces smoothing, which is a difficult high-dimensional optimization problem, by an optimization problem over a single real parameter $\alpha $ .
隐私放大和去耦无需平滑
我们用$\alpha \in(1,2]$)阶的R\ enyi熵证明了隐私放大和解耦的可实现性结果;这扩展了之前的结果,适用于$\alpha=2$。这个证明在$\alpha$接近1的情况下有效,这意味着我们可以在许多应用中绕过平滑最小熵,其中边界来自全量子AEP或熵积累,并使用R\ enyi熵进行整个证明,从而很容易获得最终任务的误差指数。这有效地取代了平滑,这是一个困难的高维优化问题,通过单个实参数$\alpha$的优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信