The crystallization temperature of granitic pegmatites: The important relationship between undercooling and critical metal prospectivity

IF 10.8 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Dalton M. McCaffrey , Simon M. Jowitt
{"title":"The crystallization temperature of granitic pegmatites: The important relationship between undercooling and critical metal prospectivity","authors":"Dalton M. McCaffrey ,&nbsp;Simon M. Jowitt","doi":"10.1016/j.earscirev.2023.104541","DOIUrl":null,"url":null,"abstract":"<div><p>Granitic pegmatite deposits contain important critical metal resources, but the geologic processes that generate critical metal mineralization in these systems remain enigmatic. Previous research indicates that liquidus undercooling is one of multiple important controls on critical metal mineralization in granitic pegmatites, although other research has suggested that this process may be unnecessary. Here we investigate the influence of crystallization temperature and undercooling on pegmatite-hosted critical metal mineralization using a global compilation of naturally-measured crystallization temperatures from &gt;200 granitic pegmatite occurrences that span various pegmatite classes, geothermometer types, and intrapegmatite zones.</p><p>Our analysis indicates that pegmatites generally crystallize between 400 and 700 °C, many of which crystallize between 400 and 600 °C. Pegmatite classes yield the following mean crystallization temperatures (±2SE): abyssal: ∼670 ± 50 °C, muscovite: ∼675 ± 50 °C, muscovite-rare element: ∼535 ± 25 °C, rare element: ∼525 ± 20 °C, and miarolitic ∼460 ± 25 °C. These variations indicate that critical metal-mineralized (i.e., rare element and miarolitic classes) pegmatites have a mean liquidus undercooling temperature of ∼175 °C and ∼240 °C, respectively, whereas barren pegmatites crystallize near the hydrous haplogranite solidus. Main-stage zone temperatures for different pegmatite families indicate that Nb-Y-F (NYF; ∼560 ± 20 °C) pegmatites crystallize at temperatures ∼50 °C higher than Li-Cs-Ta (LCT; ∼515 ± 20 °C) pegmatites, suggesting that the formation of different pegmatite families and associated commodities requires different petrogenetic processes. In addition, the subdivisions of the rare element class that are associated with different commodities also have different crystallization temperatures, where Li-mineralized pegmatites have a mean crystallization temperature of ∼510 ± 25 °C compared to Be- and rare earth element (REE)-mineralized pegmatites with mean temperatures of ∼550 ± 45 °C. In terms of intrapegmatite zoning, crystallization of the border to the core zone (main-stage zones) occurs at near-isothermal mean temperatures (∼530–500 °C), late-stage zones form at lower temperatures than the former (miarolitic cavities: ∼420 ± 45 °C, replacement: ∼465 ± 55 °C), and unzoned, typically unmineralized pegmatites crystallize at relatively high mean temperatures (∼680 ± 55 °C). However, albite-spodumene pegmatites, an unzoned, occasionally economic-grade rare element pegmatite subclass, have a mean temperature of ∼490 ± 70 °C. We also speculate that large intrapegmatite temperature variations may be important for forming pegmatite deposits such as the Tanco pegmatite. This study demonstrates that (1) large degrees of undercooling are necessary for pegmatite-forming melts to surpass the mineralogical barrier and host critical metal mineralization, and (2) pegmatite field zonation, or the apparent lack thereof, can be explained by variability in the degree of undercooling throughout a pegmatite field.</p></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"244 ","pages":"Article 104541"},"PeriodicalIF":10.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth-Science Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012825223002301","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Granitic pegmatite deposits contain important critical metal resources, but the geologic processes that generate critical metal mineralization in these systems remain enigmatic. Previous research indicates that liquidus undercooling is one of multiple important controls on critical metal mineralization in granitic pegmatites, although other research has suggested that this process may be unnecessary. Here we investigate the influence of crystallization temperature and undercooling on pegmatite-hosted critical metal mineralization using a global compilation of naturally-measured crystallization temperatures from >200 granitic pegmatite occurrences that span various pegmatite classes, geothermometer types, and intrapegmatite zones.

Our analysis indicates that pegmatites generally crystallize between 400 and 700 °C, many of which crystallize between 400 and 600 °C. Pegmatite classes yield the following mean crystallization temperatures (±2SE): abyssal: ∼670 ± 50 °C, muscovite: ∼675 ± 50 °C, muscovite-rare element: ∼535 ± 25 °C, rare element: ∼525 ± 20 °C, and miarolitic ∼460 ± 25 °C. These variations indicate that critical metal-mineralized (i.e., rare element and miarolitic classes) pegmatites have a mean liquidus undercooling temperature of ∼175 °C and ∼240 °C, respectively, whereas barren pegmatites crystallize near the hydrous haplogranite solidus. Main-stage zone temperatures for different pegmatite families indicate that Nb-Y-F (NYF; ∼560 ± 20 °C) pegmatites crystallize at temperatures ∼50 °C higher than Li-Cs-Ta (LCT; ∼515 ± 20 °C) pegmatites, suggesting that the formation of different pegmatite families and associated commodities requires different petrogenetic processes. In addition, the subdivisions of the rare element class that are associated with different commodities also have different crystallization temperatures, where Li-mineralized pegmatites have a mean crystallization temperature of ∼510 ± 25 °C compared to Be- and rare earth element (REE)-mineralized pegmatites with mean temperatures of ∼550 ± 45 °C. In terms of intrapegmatite zoning, crystallization of the border to the core zone (main-stage zones) occurs at near-isothermal mean temperatures (∼530–500 °C), late-stage zones form at lower temperatures than the former (miarolitic cavities: ∼420 ± 45 °C, replacement: ∼465 ± 55 °C), and unzoned, typically unmineralized pegmatites crystallize at relatively high mean temperatures (∼680 ± 55 °C). However, albite-spodumene pegmatites, an unzoned, occasionally economic-grade rare element pegmatite subclass, have a mean temperature of ∼490 ± 70 °C. We also speculate that large intrapegmatite temperature variations may be important for forming pegmatite deposits such as the Tanco pegmatite. This study demonstrates that (1) large degrees of undercooling are necessary for pegmatite-forming melts to surpass the mineralogical barrier and host critical metal mineralization, and (2) pegmatite field zonation, or the apparent lack thereof, can be explained by variability in the degree of undercooling throughout a pegmatite field.

花岗伟晶岩的结晶温度:过冷度与临界金属远景的重要关系
花岗伟晶岩矿床含有重要的关键金属资源,但在这些系统中产生关键金属成矿作用的地质过程仍然是一个谜。以往的研究表明,液质过冷是花岗岩伟晶岩中关键金属成矿的多重重要控制因素之一,但也有研究表明,这一过程可能是不必要的。在这里,我们研究了结晶温度和过冷对伟晶岩含矿的临界金属矿化的影响,使用了全球汇编的200个花岗岩伟晶岩的自然测量结晶温度,这些晶岩分布在不同的伟晶岩类别、地温计类型和伟晶岩内带。我们的分析表明,伟晶岩通常在400 ~ 700℃之间结晶,其中许多在400 ~ 600℃之间结晶。伟晶岩类产生以下平均结晶温度(±2SE):深海:~ 670±50°C,白云母:~ 675±50°C,白云母-稀有元素:~ 535±25°C,稀有元素:~ 525±20°C,和晶洞岩~ 460±25°C。这些变化表明,临界金属矿化(即稀有元素类和微晶岩类)伟晶岩的平均过冷温度分别为~ 175°C和~ 240°C,而贫瘠伟晶岩在含水的单长花岗岩固相附近结晶。不同伟晶岩家族主阶段带温度表明Nb-Y-F (NYF;~ 560±20°C)伟晶岩在比Li-Cs-Ta (LCT)高~ 50°C的温度下结晶;~ 515±20°C)伟晶岩,表明不同伟晶岩家族和相关商品的形成需要不同的成岩过程。此外,与不同商品相关的稀土类细分也具有不同的结晶温度,其中锂矿化伟晶岩的平均结晶温度为~ 510±25°C,而Be和稀土元素(REE)矿化伟晶岩的平均结晶温度为~ 550±45°C。在长晶岩内部分带方面,边界到核心带(主阶段带)的结晶发生在接近等温的平均温度(~ 530-500℃),后期带的形成温度低于前阶段(晶洞洞:~ 420±45℃,替代区:~ 465±55℃),而未分带的,通常未矿化的伟晶岩在相对较高的平均温度(~ 680±55℃)下结晶。然而,钠长石-锂辉石伟晶岩是一种无分区的,偶尔具有经济品位的稀有元素伟晶岩亚类,其平均温度为~ 490±70°C。我们还推测,大的伟晶岩内部温度变化可能是形成像坦科伟晶岩这样的伟晶岩矿床的重要因素。该研究表明:(1)伟晶岩形成熔体需要较大程度的过冷,才能超越矿物屏障和主临界金属成矿作用;(2)伟晶岩场分带或明显缺乏分带,可以用整个伟晶岩场过冷程度的变化来解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth-Science Reviews
Earth-Science Reviews 地学-地球科学综合
CiteScore
21.70
自引率
5.80%
发文量
294
审稿时长
15.1 weeks
期刊介绍: Covering a much wider field than the usual specialist journals, Earth Science Reviews publishes review articles dealing with all aspects of Earth Sciences, and is an important vehicle for allowing readers to see their particular interest related to the Earth Sciences as a whole.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信