{"title":"Sliding mode control design for haptic system with vibration mode","authors":"N. Kumar, J. Ohri","doi":"10.35470/2226-4116-2020-9-4-187-191","DOIUrl":null,"url":null,"abstract":"Haptic is cutting edge technology having vast application mobile, home, robotics and tele-operations etc. It has enormous scope for tele-surgery using robotic arm with haptic feedback. It brings various dicsipline such as biomedical, neurological, physics and engineering on a single platform. It have numerious scope for all field.For this, haptic robotic arm should able to emulate the desired trajectory with minimum disturbances. In the real time, a robotic haptic arm have various uncertainty, vibrations and other unmodelled parameters which impact the output adversely. In this paper, a haptic device has been modelled in presence of internal vibration mode. A robust nonlinear sliding mode control (SMC) has been proposed in this paper. The efficacy of designed controller has been verified using simulation experiment. It has been observed that using the proposed method system follows desired trajectory accurately.","PeriodicalId":37674,"journal":{"name":"Cybernetics and Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35470/2226-4116-2020-9-4-187-191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Haptic is cutting edge technology having vast application mobile, home, robotics and tele-operations etc. It has enormous scope for tele-surgery using robotic arm with haptic feedback. It brings various dicsipline such as biomedical, neurological, physics and engineering on a single platform. It have numerious scope for all field.For this, haptic robotic arm should able to emulate the desired trajectory with minimum disturbances. In the real time, a robotic haptic arm have various uncertainty, vibrations and other unmodelled parameters which impact the output adversely. In this paper, a haptic device has been modelled in presence of internal vibration mode. A robust nonlinear sliding mode control (SMC) has been proposed in this paper. The efficacy of designed controller has been verified using simulation experiment. It has been observed that using the proposed method system follows desired trajectory accurately.
期刊介绍:
The scope of the journal includes: -Nonlinear dynamics and control -Complexity and self-organization -Control of oscillations -Control of chaos and bifurcations -Control in thermodynamics -Control of flows and turbulence -Information Physics -Cyber-physical systems -Modeling and identification of physical systems -Quantum information and control -Analysis and control of complex networks -Synchronization of systems and networks -Control of mechanical and micromechanical systems -Dynamics and control of plasma, beams, lasers, nanostructures -Applications of cybernetic methods in chemistry, biology, other natural sciences The papers in cybernetics with physical flavor as well as the papers in physics with cybernetic flavor are welcome. Cybernetics is assumed to include, in addition to control, such areas as estimation, filtering, optimization, identification, information theory, pattern recognition and other related areas.