Maximal variation of curves on K3 surfaces

IF 0.8 Q2 MATHEMATICS
Yajnaseni Dutta, D. Huybrechts
{"title":"Maximal variation of curves on K3 surfaces","authors":"Yajnaseni Dutta, D. Huybrechts","doi":"10.2140/tunis.2022.4.443","DOIUrl":null,"url":null,"abstract":"We prove that curves in a non-primitive, base point free, ample linear system on a K3 surface have maximal variation. The result is deduced from general restriction theorems applied to the tangent bundle. We also show how to use specialisation to spectral curves to deduce information about the variation of curves contained in a K3 surface more directly. The situation for primitive linear systems is not clear at the moment. However, the maximal variation holds in genus two and can, in many cases, be deduced from a recent result of van Geemen and Voisin confirming a conjecture due to Matsushita.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2022.4.443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We prove that curves in a non-primitive, base point free, ample linear system on a K3 surface have maximal variation. The result is deduced from general restriction theorems applied to the tangent bundle. We also show how to use specialisation to spectral curves to deduce information about the variation of curves contained in a K3 surface more directly. The situation for primitive linear systems is not clear at the moment. However, the maximal variation holds in genus two and can, in many cases, be deduced from a recent result of van Geemen and Voisin confirming a conjecture due to Matsushita.
K3曲面上曲线的最大变化
我们证明了K3曲面上的非原始、无基点、充分线性系统中的曲线具有最大变化。这一结果是由应用于切丛的一般限制定理推导出的。我们还展示了如何使用光谱曲线的专业化来更直接地推断K3曲面中包含的曲线的变化信息。原始线性系统的情况目前还不清楚。然而,最大变异在亏格2中成立,在许多情况下,可以从van Geeman和Voisin最近的一个结果中推导出来,该结果证实了Matsushita的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信