Load-independent hydrogel friction

Q2 Materials Science
Allison L. Chau , Juan Manuel Urueña , Angela A. Pitenis
{"title":"Load-independent hydrogel friction","authors":"Allison L. Chau ,&nbsp;Juan Manuel Urueña ,&nbsp;Angela A. Pitenis","doi":"10.1016/j.biotri.2021.100183","DOIUrl":null,"url":null,"abstract":"<div><p>Biology largely manages tribological challenges either by eliminating sliding altogether or by protecting sliding interfaces with soft aqueous gels. In the body, aqueous gels are often thin (thickness, <em>t</em> &lt; 100 μm), soft (elastic modulus, E &lt; 10 kPa), lubricious (friction coefficients, μ &lt; 0.01), and cover compliant surfaces, including cell membranes, pleura, cartilage, and the eye. These characteristics provide a natural defense against wide ranges of applied loads. In this work, hydrogel samples (7.5 wt% polyacrylamide, 0.3 wt% <em>N,N′</em>-methylenebisacrylamide) were prepared with spherically-capped shell probe geometries, which have been previously determined to provide constant contact pressures during indentation measurements against flat hydrogel disks. In a self-mated (“Gemini”) sliding configuration, this geometry is capable of load-independent friction over a range of low normal loads spanning 0.5 to 2.0 mN. This friction behavior is consistent with da Vinci-Amontons' friction law (<em>F</em><sub><em>f</em></sub> = <em>μF</em><sub><em>n</em></sub>) due to the large compliance of the spherically-capped shell probe geometry enabling the area of contact to increase in proportion with the applied load and due to low shear stresses reacted across the sliding interface for high water content aqueous gels. Future bio-inspired lubrication strategies involving aqueous gels may benefit from leveraging contact geometry for constant, load-independent friction.</p></div>","PeriodicalId":38233,"journal":{"name":"Biotribology","volume":"26 ","pages":"Article 100183"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.biotri.2021.100183","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotribology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235257382100024X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 2

Abstract

Biology largely manages tribological challenges either by eliminating sliding altogether or by protecting sliding interfaces with soft aqueous gels. In the body, aqueous gels are often thin (thickness, t < 100 μm), soft (elastic modulus, E < 10 kPa), lubricious (friction coefficients, μ < 0.01), and cover compliant surfaces, including cell membranes, pleura, cartilage, and the eye. These characteristics provide a natural defense against wide ranges of applied loads. In this work, hydrogel samples (7.5 wt% polyacrylamide, 0.3 wt% N,N′-methylenebisacrylamide) were prepared with spherically-capped shell probe geometries, which have been previously determined to provide constant contact pressures during indentation measurements against flat hydrogel disks. In a self-mated (“Gemini”) sliding configuration, this geometry is capable of load-independent friction over a range of low normal loads spanning 0.5 to 2.0 mN. This friction behavior is consistent with da Vinci-Amontons' friction law (Ff = μFn) due to the large compliance of the spherically-capped shell probe geometry enabling the area of contact to increase in proportion with the applied load and due to low shear stresses reacted across the sliding interface for high water content aqueous gels. Future bio-inspired lubrication strategies involving aqueous gels may benefit from leveraging contact geometry for constant, load-independent friction.

负载无关的水凝胶摩擦
生物学在很大程度上通过消除滑动或用软水凝胶保护滑动界面来管理摩擦学挑战。在体内,水凝胶通常很薄(厚度,t <100 μm),软(弹性模量,E <10 kPa),润滑(摩擦系数,μ <0.01),并覆盖柔顺表面,包括细胞膜、胸膜、软骨和眼睛。这些特性提供了对大范围施加负载的自然防御。在这项工作中,水凝胶样品(7.5 wt%聚丙烯酰胺,0.3 wt% N,N ' -亚甲基双丙烯酰胺)用球形盖壳探针几何形状制备,这已经被确定为在对扁平水凝胶盘的压入测量期间提供恒定的接触压力。在自配(“Gemini”)滑动配置中,这种几何形状能够在0.5至2.0 mN的低正常载荷范围内进行负载无关摩擦。这种摩擦行为符合达芬奇-阿蒙顿斯摩擦定律(Ff = μFn),这是由于球盖壳探针几何形状的大顺应性使得接触面积与施加的载荷成比例地增加,并且由于高含水量水凝胶在滑动界面上反应的剪切应力低。未来涉及水凝胶的仿生润滑策略可能受益于利用接触几何来实现恒定的、不受载荷影响的摩擦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotribology
Biotribology Materials Science-Surfaces, Coatings and Films
CiteScore
4.20
自引率
0.00%
发文量
17
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信