White matter microstructural integrity continues to develop from adolescence to young adulthood in mice and humans: Same phenotype, different mechanism

Q4 Neuroscience
David J. Piekarski , Natalie M. Zahr , Qingyu Zhao , Uran Ferizi , Kilian M. Pohl , Edith V. Sullivan , Adolf Pfefferbaum
{"title":"White matter microstructural integrity continues to develop from adolescence to young adulthood in mice and humans: Same phenotype, different mechanism","authors":"David J. Piekarski ,&nbsp;Natalie M. Zahr ,&nbsp;Qingyu Zhao ,&nbsp;Uran Ferizi ,&nbsp;Kilian M. Pohl ,&nbsp;Edith V. Sullivan ,&nbsp;Adolf Pfefferbaum","doi":"10.1016/j.ynirp.2023.100179","DOIUrl":null,"url":null,"abstract":"<div><p>As direct evaluation of a mouse model of human neurodevelopment, adolescent and young adult mice and humans underwent MR diffusion tensor imaging to quantify age-related differences in microstructural integrity of brain white matter fibers. Fractional anisotropy (FA) was greater in older than younger mice and humans. Despite the cross-species commonality, the underlying developmental mechanism differed: whereas evidence for greater axonal extension contributed to higher FA in older mice, evidence for continuing myelination contributed to higher FA in human adolescent development. These differences occurred in the context of species distinctions in overall brain growth: whereas the continued growth of the brain and skull in the murine model can accommodate volume expansion into adulthood, human white matter volume and myelination continue growth into adulthood within a fixed intracranial volume. Appreciation of the similarities and differences in developmental mechanism can enhance the utility of animal models of brain white matter structure, function, and response to exogenous manipulation.</p></div>","PeriodicalId":74277,"journal":{"name":"Neuroimage. Reports","volume":"3 3","pages":"Article 100179"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage. Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666956023000247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

Abstract

As direct evaluation of a mouse model of human neurodevelopment, adolescent and young adult mice and humans underwent MR diffusion tensor imaging to quantify age-related differences in microstructural integrity of brain white matter fibers. Fractional anisotropy (FA) was greater in older than younger mice and humans. Despite the cross-species commonality, the underlying developmental mechanism differed: whereas evidence for greater axonal extension contributed to higher FA in older mice, evidence for continuing myelination contributed to higher FA in human adolescent development. These differences occurred in the context of species distinctions in overall brain growth: whereas the continued growth of the brain and skull in the murine model can accommodate volume expansion into adulthood, human white matter volume and myelination continue growth into adulthood within a fixed intracranial volume. Appreciation of the similarities and differences in developmental mechanism can enhance the utility of animal models of brain white matter structure, function, and response to exogenous manipulation.

小鼠和人类从青春期到青年期白质微观结构的完整性持续发展:相同的表型,不同的机制
作为对人类神经发育小鼠模型的直接评估,青少年和年轻成年小鼠以及人类接受了MR扩散张量成像,以量化脑白质纤维微观结构完整性与年龄相关的差异。老年小鼠和人类的部分各向异性(FA)大于年轻小鼠和人类。尽管存在跨物种的共性,但潜在的发育机制不同:尽管轴突延伸较大的证据导致老年小鼠的FA较高,但持续髓鞘形成的证据导致人类青少年发育中的FA较高。这些差异发生在大脑整体生长的物种差异的背景下:尽管小鼠模型中大脑和头骨的持续生长可以适应成年后的体积扩张,但人类白质体积和髓鞘形成在固定的颅内体积内继续生长到成年。了解发育机制的异同可以提高脑白质结构、功能和对外源性操作反应的动物模型的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroimage. Reports
Neuroimage. Reports Neuroscience (General)
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
87 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信