Micro-extraction, pre-concentration, and microfluidic-based separation of organophosphate insecticides followed by the miniaturized electrochemical detection system.

IF 2.2 4区 工程技术 Q3 PHARMACOLOGY & PHARMACY
Bioimpacts Pub Date : 2024-01-01 Epub Date: 2023-10-10 DOI:10.34172/bi.2023.25288
Abdollah Abdollahi Aghdam, Mohsen Chamanara, Reza Laripour, Mohsen Ebrahimi
{"title":"Micro-extraction, pre-concentration, and microfluidic-based separation of organophosphate insecticides followed by the miniaturized electrochemical detection system.","authors":"Abdollah Abdollahi Aghdam, Mohsen Chamanara, Reza Laripour, Mohsen Ebrahimi","doi":"10.34172/bi.2023.25288","DOIUrl":null,"url":null,"abstract":"<p><p></p><p><strong>Introduction: </strong>A new analytical method based on the coupling of microextraction and microfluidics was developed and investigated for the pre-concentration, separation, and electrochemical detection of fenitrothion (FT) and parathion (PA) at the sub-ppm concentrations.</p><p><strong>Methods: </strong>In the first step, the microchip capillary electrophoresis technique was used to serve as a separation and detection system. Analytes were injected in the 40 mm long microchannel with 10 mm sidearms. Then, they were separated by applying a direct electrical field (+1800 V) between the buffer and detection reservoirs. 2-(n-morpholino)ethanesulfonic acid (MES) buffer (20 mM, pH 5) was used as a running buffer. The electrochemical detection was performed using three Pt microelectrodes with the width of working, counter, and reference electrodes (50, 250, and 250 µm, respectively) in the out-channel approach.</p><p><strong>Results: </strong>The system was devised to have the optimum detection potential equal to -1.2 V vs. pseudo-reference electrode. The dimensions of the SU-8 channel have 20 µm depth and 50 µm width. In the second step, an air-assisted liquid-liquid microextraction technique was used to extract and preconcentration of analytes from human blood plasma. Then, 1, 2 di-bromoethan was used as extractant solvent, the analytes were preconcentrated, and the sedimented solvent (50 µL) was evaporated in a 60 ˚C water bath followed by substitution of running buffer containing 10% ethanol. The optimal extraction cycles were found to be 8 with adding 1% NaCl to the aqueous phase. Analyzing time of the mentioned analytes was less than 100s, the precision range was 3.3 - 8.2 with a linear range of 0.8-100 ppm and 1.2-100 ppm for FT and PA, respectively. The extraction recoveries were about 91% and 87% for FT and PA, respectively. The detection limits for FT and PA were 240 and 360 ppb, respectively. Finally, the reliability of the method was investigated by GC-FID.</p><p><strong>Conclusion: </strong>The proposed method and device were validated and can be used as in situ and portable detection systems for detecting fenitrothion and parathion insecticides.</p>","PeriodicalId":48614,"journal":{"name":"Bioimpacts","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11199932/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimpacts","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.34172/bi.2023.25288","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: A new analytical method based on the coupling of microextraction and microfluidics was developed and investigated for the pre-concentration, separation, and electrochemical detection of fenitrothion (FT) and parathion (PA) at the sub-ppm concentrations.

Methods: In the first step, the microchip capillary electrophoresis technique was used to serve as a separation and detection system. Analytes were injected in the 40 mm long microchannel with 10 mm sidearms. Then, they were separated by applying a direct electrical field (+1800 V) between the buffer and detection reservoirs. 2-(n-morpholino)ethanesulfonic acid (MES) buffer (20 mM, pH 5) was used as a running buffer. The electrochemical detection was performed using three Pt microelectrodes with the width of working, counter, and reference electrodes (50, 250, and 250 µm, respectively) in the out-channel approach.

Results: The system was devised to have the optimum detection potential equal to -1.2 V vs. pseudo-reference electrode. The dimensions of the SU-8 channel have 20 µm depth and 50 µm width. In the second step, an air-assisted liquid-liquid microextraction technique was used to extract and preconcentration of analytes from human blood plasma. Then, 1, 2 di-bromoethan was used as extractant solvent, the analytes were preconcentrated, and the sedimented solvent (50 µL) was evaporated in a 60 ˚C water bath followed by substitution of running buffer containing 10% ethanol. The optimal extraction cycles were found to be 8 with adding 1% NaCl to the aqueous phase. Analyzing time of the mentioned analytes was less than 100s, the precision range was 3.3 - 8.2 with a linear range of 0.8-100 ppm and 1.2-100 ppm for FT and PA, respectively. The extraction recoveries were about 91% and 87% for FT and PA, respectively. The detection limits for FT and PA were 240 and 360 ppb, respectively. Finally, the reliability of the method was investigated by GC-FID.

Conclusion: The proposed method and device were validated and can be used as in situ and portable detection systems for detecting fenitrothion and parathion insecticides.

微型化电化学检测系统对有机磷杀虫剂微萃取、预浓缩及微流控分离的影响
摘要:建立了一种基于微萃取和微流体耦合的亚ppm浓度下菲硝硫(FT)和对硫磷(PA)的预富集、分离和电化学检测新方法。方法:第一步采用微芯片毛细管电泳技术作为分离检测系统。将分析物注入40 mm长、10 mm侧臂的微通道中。然后,通过在缓冲层和检测层之间施加直接电场(+1800V)将它们分离。2-(n-morpholino)乙磺酸(MES)缓冲液(20 mM, pH 5)作为运行缓冲液。在输出通道方法中,使用三个Pt微电极进行电化学检测,其宽度分别为工作电极、计数电极和参比电极(分别为50、250和250µm)。结果:与伪ref电极相比,该系统的最佳检测电位为-1.2 V。SU-8通道的尺寸为深度20µm,宽度50µm。第二步,采用气助液-液微萃取技术对人血浆中分析物进行萃取和预富集。然后,以1,2二溴ethan为萃取溶剂,对分析物进行预浓缩,将沉淀溶剂(50µL)在60˚C水浴中蒸发,用含10%乙醇的流动缓冲液置换。在水相中加入1% NaCl时,最佳萃取周期为8次。分析时间小于100s,精密度范围为3.3 ~ 8.2,FT和PA的线性范围分别为0.8 ~ 100 ppm和1.2 ~ 100 ppm。FT和PA的提取回收率分别为91%和87%。FT和PA的检出限分别为240和360 ppb。最后,用GC-FID对方法的可靠性进行了验证。结论:所建立的方法和装置经过验证,可作为非硝硫磷和对硫磷杀虫剂的原位和便携式检测系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioimpacts
Bioimpacts Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.80
自引率
7.70%
发文量
36
审稿时长
5 weeks
期刊介绍: BioImpacts (BI) is a peer-reviewed multidisciplinary international journal, covering original research articles, reviews, commentaries, hypotheses, methodologies, and visions/reflections dealing with all aspects of biological and biomedical researches at molecular, cellular, functional and translational dimensions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信