Perron’s capacity of random sets

IF 0.7 3区 数学 Q2 MATHEMATICS
A. Gauvan
{"title":"Perron’s capacity of random sets","authors":"A. Gauvan","doi":"10.1017/s0013091523000482","DOIUrl":null,"url":null,"abstract":"\n We answer in a probabilistic setting two questions raised by Stokolos in a private communication. Precisely, given a sequence of random variables \n \n \n $\\left\\{X_k : k \\geq 1\\right\\}$\n \n uniformly distributed in \n \n \n $(0,1)$\n \n and independent, we consider the following random sets of directions\n\n \n \n \\begin{equation*}\\Omega_{\\text{rand},\\text{lin}} := \\left\\{ \\frac{\\pi X_k}{k}: k \\geq 1\\right\\}\\end{equation*}\n \n and\n\n \n \n \\begin{equation*}\\Omega_{\\text{rand},\\text{lac}} := \\left\\{\\frac{\\pi X_k}{2^k} : k\\geq 1 \\right\\}.\\end{equation*}\n \n \n We prove that almost surely the directional maximal operators associated to those sets of directions are not bounded on \n \n \n $L^p({\\mathbb{R}}^2)$\n \n for any \n \n \n $1 \\lt p \\lt \\infty$\n \n .","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091523000482","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We answer in a probabilistic setting two questions raised by Stokolos in a private communication. Precisely, given a sequence of random variables $\left\{X_k : k \geq 1\right\}$ uniformly distributed in $(0,1)$ and independent, we consider the following random sets of directions \begin{equation*}\Omega_{\text{rand},\text{lin}} := \left\{ \frac{\pi X_k}{k}: k \geq 1\right\}\end{equation*} and \begin{equation*}\Omega_{\text{rand},\text{lac}} := \left\{\frac{\pi X_k}{2^k} : k\geq 1 \right\}.\end{equation*} We prove that almost surely the directional maximal operators associated to those sets of directions are not bounded on $L^p({\mathbb{R}}^2)$ for any $1 \lt p \lt \infty$ .
随机集的Perron容量
我们在概率环境中回答了Stokolos在私人通信中提出的两个问题。精确地说,给定一系列随机变量$\left\{X_k:k\geq1\right\}$均匀分布在$(0,1)$中且独立,我们考虑以下方向的随机集\ begin{equipment*}\Omega_{\text{rand},\ text{lin}}:=\ left\{\frac{\pi X_k}{k}:k\geq 1\right\}\end{equivation*}和\ begin{equipment*}\Omega_,\text{lac}:=\left\{\frac{\pi X_k}{2^k}:k\geq 1\right\}。\end{方程*}我们证明了与那些方向集相关的方向极大算子几乎肯定不在$L^p({\mathbb{R}}^2)$上有界,对于任何$1\lt p\lt \fy$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
49
审稿时长
6 months
期刊介绍: The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信