Detection of duplicate and non-face images in the eRecruitment applications using machine learning techniques

K. Manjunath, Yogeen S. Honnavar, Rakesh Pritmani, K. Sethuraman
{"title":"Detection of duplicate and non-face images in the eRecruitment applications using machine learning techniques","authors":"K. Manjunath, Yogeen S. Honnavar, Rakesh Pritmani, K. Sethuraman","doi":"10.11591/IJRA.V10I2.PP114-122","DOIUrl":null,"url":null,"abstract":"The objective of this work is to develop methodologies to detect, and report the noncompliant images with respect to indian space research organisation (ISRO) recruitment requirements. The recruitment software hosted at U. R. rao satellite centre (URSC) is responsible for handling recruitment activities of ISRO. Large number of online applications are received for each post advertised. In many cases, it is observed that the candidates are uploading either wrong or non-compliant images of the required documents. By non-compliant images, we mean images which do not have faces or there is not enough clarity in the faces present in the images uploaded. In this work, we attempt to address two specific problems namely: 1) To recognise image uploaded to recruitment portal contains a human face or not. This is addressed using a face detection algorithm. 2) To check whether images uploaded by two or more applications are same or not. This is achieved by using machine learning (ML) algorithms to generate similarity score between two images, and then identify the duplicate images. Screening of valid applications becomes very challenging as the verification of such images using a manual process is very time consuming and requires large human efforts. Hence, we propose novel ML techniques to determine duplicate and non-face images in the applications received by the recruitment portal.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJRA.V10I2.PP114-122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this work is to develop methodologies to detect, and report the noncompliant images with respect to indian space research organisation (ISRO) recruitment requirements. The recruitment software hosted at U. R. rao satellite centre (URSC) is responsible for handling recruitment activities of ISRO. Large number of online applications are received for each post advertised. In many cases, it is observed that the candidates are uploading either wrong or non-compliant images of the required documents. By non-compliant images, we mean images which do not have faces or there is not enough clarity in the faces present in the images uploaded. In this work, we attempt to address two specific problems namely: 1) To recognise image uploaded to recruitment portal contains a human face or not. This is addressed using a face detection algorithm. 2) To check whether images uploaded by two or more applications are same or not. This is achieved by using machine learning (ML) algorithms to generate similarity score between two images, and then identify the duplicate images. Screening of valid applications becomes very challenging as the verification of such images using a manual process is very time consuming and requires large human efforts. Hence, we propose novel ML techniques to determine duplicate and non-face images in the applications received by the recruitment portal.
使用机器学习技术检测电子招聘应用程序中的重复和非人脸图像
这项工作的目的是根据印度空间研究组织(ISRO)的招聘要求,开发检测和报告不合规图像的方法。在U.R.rao卫星中心(URSC)托管的招聘软件负责处理印度空间研究组织的招聘活动。每个招聘广告都会收到大量的在线申请。在许多情况下,可以观察到候选人上传了所需文件的错误或不合规的图像。所谓不合规图像,我们指的是没有人脸或上传图像中人脸不够清晰的图像。在这项工作中,我们试图解决两个具体问题,即:1)识别上传到招聘门户网站的图像是否包含人脸。这是使用人脸检测算法来解决的。2) 检查两个或多个应用程序上传的图像是否相同。这是通过使用机器学习(ML)算法生成两幅图像之间的相似性得分,然后识别重复图像来实现的。筛选有效的应用程序变得非常具有挑战性,因为使用手动过程验证此类图像非常耗时,并且需要大量的人力工作。因此,我们提出了新的ML技术来确定招聘门户网站收到的申请中的重复和非人脸图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信