Genetic programming convergence

IF 1.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
W. Langdon
{"title":"Genetic programming convergence","authors":"W. Langdon","doi":"10.1145/3520304.3534063","DOIUrl":null,"url":null,"abstract":"We study both genotypic and phenotypic convergence in GP floating point continuous domain symbolic regression over thousands of generations. Subtree fitness variation across the population is measured and shown in many cases to fall. In an expanding region about the root node, both genetic opcodes and function evaluation values are identical or nearly identical. Bottom up (leaf to root) analysis shows both syntactic and semantic (including entropy) similarity expand from the outermost node. Despite large regions of zero variation, fitness continues to evolve and near zero crossover disruption suggests improved GP systems within existing memory use.","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"23 1","pages":"71-104"},"PeriodicalIF":1.7000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Programming and Evolvable Machines","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3520304.3534063","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 10

Abstract

We study both genotypic and phenotypic convergence in GP floating point continuous domain symbolic regression over thousands of generations. Subtree fitness variation across the population is measured and shown in many cases to fall. In an expanding region about the root node, both genetic opcodes and function evaluation values are identical or nearly identical. Bottom up (leaf to root) analysis shows both syntactic and semantic (including entropy) similarity expand from the outermost node. Despite large regions of zero variation, fitness continues to evolve and near zero crossover disruption suggests improved GP systems within existing memory use.
遗传规划收敛
我们研究了GP浮点连续域符号回归的基因型和表型收敛。测量了整个种群的子树适应度变化,并显示在许多情况下下降。在根节点附近的扩展区域内,遗传操作码和功能评价值是相同或接近相同的。自底向上(从叶子到根)分析显示,语法和语义(包括熵)相似性从最外层的节点扩展。尽管存在很大的零变异区域,但适应度仍在继续进化,接近零交叉干扰表明,在现有内存使用范围内,GP系统得到了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genetic Programming and Evolvable Machines
Genetic Programming and Evolvable Machines 工程技术-计算机:理论方法
CiteScore
5.90
自引率
3.80%
发文量
19
审稿时长
6 months
期刊介绍: A unique source reporting on methods for artificial evolution of programs and machines... Reports innovative and significant progress in automatic evolution of software and hardware. Features both theoretical and application papers. Covers hardware implementations, artificial life, molecular computing and emergent computation techniques. Examines such related topics as evolutionary algorithms with variable-size genomes, alternate methods of program induction, approaches to engineering systems development based on embryology, morphogenesis or other techniques inspired by adaptive natural systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信