A few more extensions of Putinar’s Positivstellensatz to non-compact sets

IF 0.5 4区 数学 Q3 MATHEMATICS
Paula Escorcielo, Daniel Perrucci
{"title":"A few more extensions of Putinar’s Positivstellensatz to non-compact sets","authors":"Paula Escorcielo, Daniel Perrucci","doi":"10.1515/advgeom-2022-0012","DOIUrl":null,"url":null,"abstract":"Abstract We extend previous results about Putinar’s Positivstellensatz for cylinders of type S × ℝ to sets of type S × ℝr in some special cases, taking into account r and the degree of the polynomial with respect to the variables moving in ℝr (this is to say, in the non-bounded directions). These special cases are in correspondence with the ones where the equality between the cone of non-negative polynomials and the cone of sums of squares holds. Degree bounds are provided.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2022-0012","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We extend previous results about Putinar’s Positivstellensatz for cylinders of type S × ℝ to sets of type S × ℝr in some special cases, taking into account r and the degree of the polynomial with respect to the variables moving in ℝr (this is to say, in the non-bounded directions). These special cases are in correspondence with the ones where the equality between the cone of non-negative polynomials and the cone of sums of squares holds. Degree bounds are provided.
Putinar的正stellensatz在非紧集上的几个扩展
考虑r和多项式相对于在S × r中运动的变量(即在无界方向上运动的变量)的次,我们将先前关于S × l型柱体的Putinar正stellensatz的结果推广到S × l型集合。这些特殊情况对应于非负多项式的锥与平方和的锥之间的等式成立的情况。提供了度边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信