{"title":"A few more extensions of Putinar’s Positivstellensatz to non-compact sets","authors":"Paula Escorcielo, Daniel Perrucci","doi":"10.1515/advgeom-2022-0012","DOIUrl":null,"url":null,"abstract":"Abstract We extend previous results about Putinar’s Positivstellensatz for cylinders of type S × ℝ to sets of type S × ℝr in some special cases, taking into account r and the degree of the polynomial with respect to the variables moving in ℝr (this is to say, in the non-bounded directions). These special cases are in correspondence with the ones where the equality between the cone of non-negative polynomials and the cone of sums of squares holds. Degree bounds are provided.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2022-0012","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We extend previous results about Putinar’s Positivstellensatz for cylinders of type S × ℝ to sets of type S × ℝr in some special cases, taking into account r and the degree of the polynomial with respect to the variables moving in ℝr (this is to say, in the non-bounded directions). These special cases are in correspondence with the ones where the equality between the cone of non-negative polynomials and the cone of sums of squares holds. Degree bounds are provided.
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.