Stable anisotropic minimal hypersurfaces in $\mathbf {R}^{4}$

IF 2.8 1区 数学 Q1 MATHEMATICS
Otis Chodosh, C. Li
{"title":"Stable anisotropic minimal hypersurfaces in \n$\\mathbf {R}^{4}$","authors":"Otis Chodosh, C. Li","doi":"10.1017/fmp.2023.1","DOIUrl":null,"url":null,"abstract":"Abstract We show that a complete, two-sided, stable immersed anisotropic minimal hypersurface in \n$\\mathbf {R}^4$\n has intrinsic cubic volume growth, provided the parametric elliptic integral is \n$C^2$\n -close to the area functional. We also obtain an interior volume upper bound for stable anisotropic minimal hypersurfaces in the unit ball. We can estimate the constants explicitly in all of our results. In particular, this paper gives an alternative proof of our recent stable Bernstein theorem for minimal hypersurfaces in \n$\\mathbf {R}^4$\n . The new proof is more closely related to techniques from the study of strictly positive scalar curvature.","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":"11 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We show that a complete, two-sided, stable immersed anisotropic minimal hypersurface in $\mathbf {R}^4$ has intrinsic cubic volume growth, provided the parametric elliptic integral is $C^2$ -close to the area functional. We also obtain an interior volume upper bound for stable anisotropic minimal hypersurfaces in the unit ball. We can estimate the constants explicitly in all of our results. In particular, this paper gives an alternative proof of our recent stable Bernstein theorem for minimal hypersurfaces in $\mathbf {R}^4$ . The new proof is more closely related to techniques from the study of strictly positive scalar curvature.
$\mathbf{R}^{4}中的稳定各向异性极小超曲面$
摘要:我们证明了$\mathbf {R}^4$中一个完备的、稳定的浸入各向异性最小超曲面具有内在的立方体积增长,条件是参数椭圆积分$C^2$ -接近面积泛函。我们还得到了单位球中稳定各向异性最小超曲面的内体积上界。我们可以明确地估计所有结果中的常数。特别地,本文给出了$\mathbf {R}^4$中最小超曲面的稳定Bernstein定理的另一种证明。新的证明与严格正标量曲率的研究技术有更密切的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum of Mathematics Pi
Forum of Mathematics Pi Mathematics-Statistics and Probability
CiteScore
3.50
自引率
0.00%
发文量
21
审稿时长
19 weeks
期刊介绍: Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信