Yu. S. Yapontseva, V. N. Zaichenko, V. S. Kublanovsky, O. Yu. Gorobets, Yu. M. Troshchenkov, O. A. Vyshnevskyi
{"title":"Effect of a Constant Magnetic Field on Electrodeposition of CoMo, CoRe, and CoMoRe Alloys from a Citrate Electrolyte","authors":"Yu. S. Yapontseva, V. N. Zaichenko, V. S. Kublanovsky, O. Yu. Gorobets, Yu. M. Troshchenkov, O. A. Vyshnevskyi","doi":"10.3103/S106837552304018X","DOIUrl":null,"url":null,"abstract":"<div><div><h3>\n <b>Abstract</b>—</h3><p>Electrodeposition of CoMo and CoRe binary alloys and CoMoRe ternary alloys from a citrate electrolyte (pH 3.5) was studied depending on the presence of a magnetostatic field and the direction of the magnetic induction vector relative to the surface of the working electrode. It was shown that magnetoelectrolysis significantly increases the current efficiency of all investigated alloys, especially the CoMoRe ternary alloy. The forces acting in the liquid and on bubbles of hydrogen evolved during a reaction in a magnetostatic field were modeled. It was demonstrated that the generation of convective flows by magnetohydrodynamic effect is neither single, nor determining factor. In the case of intense gas evolution, the force balance varies depending on the size of the bubbles: the conduction force and the buoyancy force dominate for large bubbles (about 100 μm), whereas the magnetic gradient force is predominant for small bubbles (less than 1 μm).</p></div></div>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"59 4","pages":"412 - 421"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S106837552304018X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract—
Electrodeposition of CoMo and CoRe binary alloys and CoMoRe ternary alloys from a citrate electrolyte (pH 3.5) was studied depending on the presence of a magnetostatic field and the direction of the magnetic induction vector relative to the surface of the working electrode. It was shown that magnetoelectrolysis significantly increases the current efficiency of all investigated alloys, especially the CoMoRe ternary alloy. The forces acting in the liquid and on bubbles of hydrogen evolved during a reaction in a magnetostatic field were modeled. It was demonstrated that the generation of convective flows by magnetohydrodynamic effect is neither single, nor determining factor. In the case of intense gas evolution, the force balance varies depending on the size of the bubbles: the conduction force and the buoyancy force dominate for large bubbles (about 100 μm), whereas the magnetic gradient force is predominant for small bubbles (less than 1 μm).
期刊介绍:
Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.