Composition-dependent properties and network structure of Ge-Se-Te chalcogenide glasses

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
L. Yang, G. Zhou, C. G. Lin
{"title":"Composition-dependent properties and network structure of Ge-Se-Te chalcogenide glasses","authors":"L. Yang, G. Zhou, C. G. Lin","doi":"10.15251/cl.2023.201.1","DOIUrl":null,"url":null,"abstract":"Ge12.5Se87.5-xTex (0≤x≤45) glasses were selected for elucidating the composition-dependent properties and network structure of Te-containing glasses. With increasing Te content (x), Vickers hardness (Hv) and glass transition temperature (Tg) initially increased and then decreased, showing a compositional threshold at x=27.5. It is found that the compositional trend of Hv and Tg is in good accordance with the structural evolution studied by Raman spectra. The results suggest that the introduction of Te leads to the evolution of the network connectivity and average bond strength of Ge12.5Se87.5-xTex glass structure, which imposes an opposite impact on the structural properties (Hv and Tg). This work provides a new insight to the structure-property correlation of Ge-Se-Te, which would facilitate the understanding of the structural role of Te in ChGs.","PeriodicalId":9710,"journal":{"name":"Chalcogenide Letters","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chalcogenide Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/cl.2023.201.1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ge12.5Se87.5-xTex (0≤x≤45) glasses were selected for elucidating the composition-dependent properties and network structure of Te-containing glasses. With increasing Te content (x), Vickers hardness (Hv) and glass transition temperature (Tg) initially increased and then decreased, showing a compositional threshold at x=27.5. It is found that the compositional trend of Hv and Tg is in good accordance with the structural evolution studied by Raman spectra. The results suggest that the introduction of Te leads to the evolution of the network connectivity and average bond strength of Ge12.5Se87.5-xTex glass structure, which imposes an opposite impact on the structural properties (Hv and Tg). This work provides a new insight to the structure-property correlation of Ge-Se-Te, which would facilitate the understanding of the structural role of Te in ChGs.
Ge-Se-Te硫系玻璃的组分依赖性质和网络结构
选择Ge12.5Se87.5-xTex(0≤x≤45)玻璃来阐明含te玻璃的组分依赖性质和网络结构。随着Te含量(x)的增加,维氏硬度(Hv)和玻璃化转变温度(Tg)先升高后降低,在x=27.5处出现组分阈值。发现Hv和Tg的组成趋势与拉曼光谱研究的结构演变相吻合。结果表明,Te的引入导致了Ge12.5Se87.5-xTex玻璃结构的网络连度和平均结合强度的演变,而对结构性能(Hv和Tg)产生了相反的影响。本研究为Ge-Se-Te的结构-性质相关性提供了新的认识,有助于理解Te在ChGs中的结构作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chalcogenide Letters
Chalcogenide Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
1.80
自引率
20.00%
发文量
86
审稿时长
1 months
期刊介绍: Chalcogenide Letters (CHL) has the aim to publish rapidly papers in chalcogenide field of research and appears with twelve issues per year. The journal is open to letters, short communications and breakings news inserted as Short Notes, in the field of chalcogenide materials either amorphous or crystalline. Short papers in structure, properties and applications, as well as those covering special properties in nano-structured chalcogenides are admitted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信