Resurgence of a de Sitter Glauber-Sudarshan State: Nodal Diagrams and Borel Resummation

IF 5.6 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Suddhasattwa Brahma, Keshav Dasgupta, Mir-Mehedi Faruk, Bohdan Kulinich, Viraj Meruliya, Brent Pym, Radu Tatar
{"title":"Resurgence of a de Sitter Glauber-Sudarshan State: Nodal Diagrams and Borel Resummation","authors":"Suddhasattwa Brahma,&nbsp;Keshav Dasgupta,&nbsp;Mir-Mehedi Faruk,&nbsp;Bohdan Kulinich,&nbsp;Viraj Meruliya,&nbsp;Brent Pym,&nbsp;Radu Tatar","doi":"10.1002/prop.202300136","DOIUrl":null,"url":null,"abstract":"<p>It is shown in this article that an explicit construction of a four-dimensional de Sitter space may be performed using a diagrammatic approach via nodal diagrams emanating from the path integral representation of the Glauber-Sudarshan state. Sum of these diagrams typically leads to an asymptotic series of Gevrey kind which can then be Borel resummed, thus reproducing the non-perturbative structure of the system. The analysis shows that four-dimensional de Sitter space is not only possible in string theory overcoming the no-go and the swampland criteria—albeit as a Glauber-Sudarshan state—but it may also be non-perturbatively stable within a controlled temporal domain. Somewhat consistently, the Borel resummation of the Gevrey series provides strong hint towards the positivity of the cosmological constant.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"71 12","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.202300136","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.202300136","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

It is shown in this article that an explicit construction of a four-dimensional de Sitter space may be performed using a diagrammatic approach via nodal diagrams emanating from the path integral representation of the Glauber-Sudarshan state. Sum of these diagrams typically leads to an asymptotic series of Gevrey kind which can then be Borel resummed, thus reproducing the non-perturbative structure of the system. The analysis shows that four-dimensional de Sitter space is not only possible in string theory overcoming the no-go and the swampland criteria—albeit as a Glauber-Sudarshan state—but it may also be non-perturbatively stable within a controlled temporal domain. Somewhat consistently, the Borel resummation of the Gevrey series provides strong hint towards the positivity of the cosmological constant.

Abstract Image

de Sitter Glauber - Sudarshan状态的复兴:节点图和Borel恢复
我们证明,可以通过Glauber Sudarshan态的路径积分表示产生的节点图,使用图解方法来执行四维de Sitter空间的显式构造。这些图的和通常导致Gevrey类的渐近级数,然后可以对其进行Borel重注,从而再现系统的非微扰结构。我们的分析表明,四维德西特空间不仅在弦理论中有可能克服不通过和沼泽地标准——尽管它是一个Glauber Sudarshan状态——而且在受控的时域内也可能是非扰动稳定的。在某种程度上一致的是,格夫里级数的Borel重新汇编为宇宙学常数的正性提供了强有力的暗示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
7.70%
发文量
75
审稿时长
6-12 weeks
期刊介绍: The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013). Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信