{"title":"An Electromechanical Impedance-Based Application of Realtime Monitoring for the Load-Induced Flexural Stress and Damage in Fiber-Reinforced Concrete","authors":"","doi":"10.3390/fib11040034","DOIUrl":null,"url":null,"abstract":"Effective real-time structural health monitoring in concrete structures is paramount to evaluating safety conditions and the timely maintenance of concrete structures. Especially, the presence of discrete fibers in fiber-reinforced concrete restrains crack propagation into small and thin cracks, which increases the difficulty in detecting damage. In this study, an array of piezoelectric lead zirconate titanate (PZT) transducers was applied to study the effects of external load-induced flexural stress and damage in fiber-reinforced concrete beams using the electromechanical impedance (EMI) or electromechanical admittance (EMA) methods. Beams were subjected to a four-point bending test under repeatable loading, while PZTs evaluated corresponding flexural stress and induced damage simultaneously. Due to the influence of the medium’s stress fields in the different types of wave propagation in structural elements, PZT transducers measurements are accordingly affected under variable stress fields, in addition to the effect of the higher level of damage that occurred in the medium. According to the results of the tests, variation in EMA signatures, following flexural stress and gradual damage changes, provided convincing evidence for predicting stress and damage development.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib11040034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Effective real-time structural health monitoring in concrete structures is paramount to evaluating safety conditions and the timely maintenance of concrete structures. Especially, the presence of discrete fibers in fiber-reinforced concrete restrains crack propagation into small and thin cracks, which increases the difficulty in detecting damage. In this study, an array of piezoelectric lead zirconate titanate (PZT) transducers was applied to study the effects of external load-induced flexural stress and damage in fiber-reinforced concrete beams using the electromechanical impedance (EMI) or electromechanical admittance (EMA) methods. Beams were subjected to a four-point bending test under repeatable loading, while PZTs evaluated corresponding flexural stress and induced damage simultaneously. Due to the influence of the medium’s stress fields in the different types of wave propagation in structural elements, PZT transducers measurements are accordingly affected under variable stress fields, in addition to the effect of the higher level of damage that occurred in the medium. According to the results of the tests, variation in EMA signatures, following flexural stress and gradual damage changes, provided convincing evidence for predicting stress and damage development.
FibersEngineering-Civil and Structural Engineering
CiteScore
7.00
自引率
7.70%
发文量
92
审稿时长
11 weeks
期刊介绍:
Fibers (ISSN 2079-6439) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications on the materials science and all other empirical and theoretical studies of fibers, providing a forum for integrating fiber research across many disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. The following topics are relevant and within the scope of this journal: -textile fibers -natural fibers and biological microfibrils -metallic fibers -optic fibers -carbon fibers -silicon carbide fibers -fiberglass -mineral fibers -cellulose fibers -polymer fibers -microfibers, nanofibers and nanotubes -new processing methods for fibers -chemistry of fiber materials -physical properties of fibers -exposure to and toxicology of fibers -biokinetics of fibers -the diversity of fiber origins