{"title":"Enhanced effect of biochar on leaching vanadium and copper from stone coal tailings by Thiobacillus ferrooxidans","authors":"Yingbo Dong, Shijia Chong, Hai Lin","doi":"10.1007/s11356-021-17259-y","DOIUrl":null,"url":null,"abstract":"<div><p>Among the many extraction technologies for recovering metal resources from tailings, bioleaching technology is gradually showing its momentum. In our research, the enhanced effect of biochar on the bioleaching of stone coal tailings by <i>Thiobacillus ferrooxidans</i> (<i>T. ferrooxidans</i>) has been explored. In the static bioleaching experiment for 10 days, the leaching rate of vanadium (V) and copper (Cu) increased by 26.8% and 21.0% respectively after adding 5 g/L biochar. The dynamic bioleaching experiment further verified that under the promotion of biochar, the 44 day cumulative leaching rate of V and Cu increased by 15.3% and 14.5%, respectively. The promoting effect of biochar on <i>T. ferrooxidans</i> was mainly reflected in two aspects. The unique porous structure of biochar created a microenvironment for free microorganisms for inhabitation, while storing abundant nutrients. Biochar can also act as an excellent electronic medium to promote electron transfer, improving the oxidation ability of <i>T. ferrooxidans</i> on Fe<sup>2+</sup>. Furthermore, the presence of biochar may effectively inhibit the formation of jarosite precipitation on tailings in bioleaching, thereby improving the dissolution of tailings and the release of metal elements. This study demonstrates that biochar-enhanced bioleaching may be an efficient and environmentally friendly method for recovering metal resources from tailings.</p></div>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":"29 14","pages":"20398 - 20408"},"PeriodicalIF":5.8000,"publicationDate":"2021-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11356-021-17259-y.pdf","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11356-021-17259-y","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 10
Abstract
Among the many extraction technologies for recovering metal resources from tailings, bioleaching technology is gradually showing its momentum. In our research, the enhanced effect of biochar on the bioleaching of stone coal tailings by Thiobacillus ferrooxidans (T. ferrooxidans) has been explored. In the static bioleaching experiment for 10 days, the leaching rate of vanadium (V) and copper (Cu) increased by 26.8% and 21.0% respectively after adding 5 g/L biochar. The dynamic bioleaching experiment further verified that under the promotion of biochar, the 44 day cumulative leaching rate of V and Cu increased by 15.3% and 14.5%, respectively. The promoting effect of biochar on T. ferrooxidans was mainly reflected in two aspects. The unique porous structure of biochar created a microenvironment for free microorganisms for inhabitation, while storing abundant nutrients. Biochar can also act as an excellent electronic medium to promote electron transfer, improving the oxidation ability of T. ferrooxidans on Fe2+. Furthermore, the presence of biochar may effectively inhibit the formation of jarosite precipitation on tailings in bioleaching, thereby improving the dissolution of tailings and the release of metal elements. This study demonstrates that biochar-enhanced bioleaching may be an efficient and environmentally friendly method for recovering metal resources from tailings.
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.