Primordial Black Holes as Dark Matter: Recent Developments

IF 9.1 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR
B. Carr, Florian Kuhnel
{"title":"Primordial Black Holes as Dark Matter: Recent Developments","authors":"B. Carr, Florian Kuhnel","doi":"10.1146/annurev-nucl-050520-125911","DOIUrl":null,"url":null,"abstract":"Although the dark matter is usually assumed to be made up of some form of elementary particle, primordial black holes (PBHs) could also provide some of it. However, various constraints restrict the possible mass windows to 1016–1017 g, 1020–1024 g, and 10–103 M⊙. The last possibility is contentious but of special interest in view of the recent detection of black hole mergers by LIGO/Virgo. PBHs might have important consequences and resolve various cosmological conundra even if they account for only a small fraction of the dark matter density. In particular, those larger than 103 M⊙ could generate cosmological structures through the seed or Poisson effect, thereby alleviating some problems associated with the standard cold dark matter scenario, and sufficiently large PBHs might provide seeds for the supermassive black holes in galactic nuclei. More exotically, the Planck-mass relics of PBH evaporations or stupendously large black holes bigger than 1012 M⊙ could provide an interesting dark component.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":" ","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2020-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-nucl-050520-125911","citationCount":"780","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Nuclear and Particle Science","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-050520-125911","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 780

Abstract

Although the dark matter is usually assumed to be made up of some form of elementary particle, primordial black holes (PBHs) could also provide some of it. However, various constraints restrict the possible mass windows to 1016–1017 g, 1020–1024 g, and 10–103 M⊙. The last possibility is contentious but of special interest in view of the recent detection of black hole mergers by LIGO/Virgo. PBHs might have important consequences and resolve various cosmological conundra even if they account for only a small fraction of the dark matter density. In particular, those larger than 103 M⊙ could generate cosmological structures through the seed or Poisson effect, thereby alleviating some problems associated with the standard cold dark matter scenario, and sufficiently large PBHs might provide seeds for the supermassive black holes in galactic nuclei. More exotically, the Planck-mass relics of PBH evaporations or stupendously large black holes bigger than 1012 M⊙ could provide an interesting dark component.
作为暗物质的原始黑洞:最新进展
尽管暗物质通常被认为是由某种形式的基本粒子组成的,但原始黑洞(PBH)也可能提供其中的一些。然而,各种限制将可能的质量窗口限制在1016–1017 g、1020–1024 g和10–103 M⊙。最后一种可能性是有争议的,但鉴于LIGO/Virgo最近发现的黑洞合并,这一可能性特别令人感兴趣。PBH可能会产生重要的后果,并解决各种宇宙学难题,即使它们只占暗物质密度的一小部分。特别是,那些大于103M⊙的粒子可以通过种子或泊松效应产生宇宙学结构,从而缓解与标准冷暗物质场景相关的一些问题,而足够大的PBH可能为星系核中的超大质量黑洞提供种子。更奇特的是,普朗克质量的PBH蒸发遗迹或大于1012 M⊙的巨大黑洞可能会提供一个有趣的暗成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
21.50
自引率
0.80%
发文量
18
期刊介绍: The Annual Review of Nuclear and Particle Science is a publication that has been available since 1952. It focuses on various aspects of nuclear and particle science, including both theoretical and experimental developments. The journal covers topics such as nuclear structure, heavy ion interactions, oscillations observed in solar and atmospheric neutrinos, the physics of heavy quarks, the impact of particle and nuclear physics on astroparticle physics, and recent advancements in accelerator design and instrumentation. One significant recent change in the journal is the conversion of its current volume from gated to open access. This conversion was made possible through Annual Reviews' Subscribe to Open program. As a result, all articles published in the current volume are now freely available to the public under a CC BY license. This change allows for greater accessibility and dissemination of research in the field of nuclear and particle science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信