Hanguang Zhang, Luigi Osmieri, Jae Hyung Park, Hoon Taek Chung, David A. Cullen, Kenneth C. Neyerlin, Deborah J. Myers, Piotr Zelenay
{"title":"Standardized protocols for evaluating platinum group metal-free oxygen reduction reaction electrocatalysts in polymer electrolyte fuel cells","authors":"Hanguang Zhang, Luigi Osmieri, Jae Hyung Park, Hoon Taek Chung, David A. Cullen, Kenneth C. Neyerlin, Deborah J. Myers, Piotr Zelenay","doi":"10.1038/s41929-022-00778-3","DOIUrl":null,"url":null,"abstract":"Platinum group metal (PGM)-free electrocatalysts for the oxygen reduction reaction at the polymer electrolyte fuel cell cathode have shown substantial improvements in activity—especially those derived from transition metals, nitrogen and carbon. However, their stability and durability remain insufficient. A key to enabling future improvements and performance comparisons lies in the development of test protocols that are relevant to the operating conditions of the fuel cell cathode, can be completed within a reasonable time and are ubiquitously adopted. Here we propose and validate such protocols, designed with special attention to typical catalyst degradation mechanisms of PGM-free catalysts. The results of the cross-laboratory validation study using two different catalysts attest to the strength and feasibility of the proposed approach. We hope that the information provided here can serve as a broad and effective platform for assessing the performance and durability of PGM-free catalysts for polymer electrolyte fuel cells. The development of platinum group metal-free catalysts for the oxygen reduction reaction is central to the implementation of fuel cell technology. Here the authors introduce and analyse a dedicated protocol for platinum group metal-free oxygen reduction reaction catalysts to assess their activity and durability under relevant working conditions.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"5 5","pages":"455-462"},"PeriodicalIF":42.8000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-022-00778-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 25
Abstract
Platinum group metal (PGM)-free electrocatalysts for the oxygen reduction reaction at the polymer electrolyte fuel cell cathode have shown substantial improvements in activity—especially those derived from transition metals, nitrogen and carbon. However, their stability and durability remain insufficient. A key to enabling future improvements and performance comparisons lies in the development of test protocols that are relevant to the operating conditions of the fuel cell cathode, can be completed within a reasonable time and are ubiquitously adopted. Here we propose and validate such protocols, designed with special attention to typical catalyst degradation mechanisms of PGM-free catalysts. The results of the cross-laboratory validation study using two different catalysts attest to the strength and feasibility of the proposed approach. We hope that the information provided here can serve as a broad and effective platform for assessing the performance and durability of PGM-free catalysts for polymer electrolyte fuel cells. The development of platinum group metal-free catalysts for the oxygen reduction reaction is central to the implementation of fuel cell technology. Here the authors introduce and analyse a dedicated protocol for platinum group metal-free oxygen reduction reaction catalysts to assess their activity and durability under relevant working conditions.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.