Geometric characterisation of subvarieties of 𝓔6(𝕂) related to the ternions and sextonions

IF 0.5 4区 数学 Q3 MATHEMATICS
A. De Schepper
{"title":"Geometric characterisation of subvarieties of 𝓔6(𝕂) related to the ternions and sextonions","authors":"A. De Schepper","doi":"10.1515/advgeom-2022-0005","DOIUrl":null,"url":null,"abstract":"Abstract The main achievement of this paper is a geometric characterisation of certain subvarieties of the Cartan variety 𝓔6(𝕂) over an arbitrary field 𝕂. The characterised varieties arise as Veronese representations of certain ring projective planes over quadratic subalgebras of the split octonions 𝕆’ over 𝕂 (among which the sextonions, a 6-dimensional non-associative algebra). We describe how these varieties are linked to the Freudenthal–Tits magic square, and discuss how they would even fit in, when also allowing the sextonions and other “degenerate composition algebras” as the algebras used to construct the square.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2022-0005","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The main achievement of this paper is a geometric characterisation of certain subvarieties of the Cartan variety 𝓔6(𝕂) over an arbitrary field 𝕂. The characterised varieties arise as Veronese representations of certain ring projective planes over quadratic subalgebras of the split octonions 𝕆’ over 𝕂 (among which the sextonions, a 6-dimensional non-associative algebra). We describe how these varieties are linked to the Freudenthal–Tits magic square, and discuss how they would even fit in, when also allowing the sextonions and other “degenerate composition algebras” as the algebras used to construct the square.
的子变种的几何特征𝓔6(𝕂) 与燕鸥和性欲有关
摘要本文的主要成果是对Cartan变种的某些子变种进行了几何刻画𝓔6(𝕂) 在任意域上𝕂. 具有特征的变种作为分裂八元二次子代数上某些环投影平面的Veronese表示而出现𝕆’ 结束𝕂 (其中六次子,一个6维的非结合代数)。我们描述了这些变体是如何与Freudenthal–Tits幻方联系在一起的,并讨论了它们是如何融入的,同时也允许六次子和其他“退化组成代数”作为用于构造平方的代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信