Isoperimetric problems for zonotopes

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2023-03-15 DOI:10.1112/mtk.12191
Antal Joós, Zsolt Lángi
{"title":"Isoperimetric problems for zonotopes","authors":"Antal Joós,&nbsp;Zsolt Lángi","doi":"10.1112/mtk.12191","DOIUrl":null,"url":null,"abstract":"<p>Shephard (Canad. J. Math. <b>26</b> (1974), 302–321) proved a decomposition theorem for zonotopes yielding a simple formula for their volume. In this note, we prove a generalization of this theorem yielding similar formulae for their intrinsic volumes. We use this result to investigate geometric extremum problems for zonotopes generated by a given number of segments. In particular, we solve isoperimetric problems for <i>d</i>-dimensional zonotopes generated by <i>d</i> or <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$d+1$</annotation>\n </semantics></math> segments, and give asymptotic estimates for the solutions of similar problems for zonotopes generated by sufficiently many segments. In addition, we present applications of our results to the ℓ<sub>1</sub> polarization problem on the unit sphere and to a vector-valued Maclaurin inequality conjectured by Brazitikos and McIntyre in 2021.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12191","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Shephard (Canad. J. Math. 26 (1974), 302–321) proved a decomposition theorem for zonotopes yielding a simple formula for their volume. In this note, we prove a generalization of this theorem yielding similar formulae for their intrinsic volumes. We use this result to investigate geometric extremum problems for zonotopes generated by a given number of segments. In particular, we solve isoperimetric problems for d-dimensional zonotopes generated by d or d + 1 $d+1$ segments, and give asymptotic estimates for the solutions of similar problems for zonotopes generated by sufficiently many segments. In addition, we present applications of our results to the ℓ1 polarization problem on the unit sphere and to a vector-valued Maclaurin inequality conjectured by Brazitikos and McIntyre in 2021.

带状疱疹的等周问题
Shephard(Canad.J.Math.26(1974),302–321)证明了zonotopes的分解定理,得到了它们体积的简单公式。在这个注记中,我们证明了这个定理的推广,得到了它们的内禀体积的相似公式。我们用这个结果来研究由给定数量的线段生成的带状图的几何极值问题。特别地,我们解决了由d或d+1$d+1$段生成的d维带状图的等周问题,并给出了由足够多的段生成的带状图的类似问题的解的渐近估计。此外,我们还将我们的结果应用于ℓ1极化问题,以及Brazitikos和McIntyre在2021年推测的向量值Maclaurin不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信