A. Belahcen, P. Rasilo, K. Fonteyn, R. Kouhia, Deepak Singh, A. Arkkio
{"title":"Modeling the stress effect on the measurement of magnetostriction in electrical sheets under rotational magnetization","authors":"A. Belahcen, P. Rasilo, K. Fonteyn, R. Kouhia, Deepak Singh, A. Arkkio","doi":"10.23998/RM.69204","DOIUrl":null,"url":null,"abstract":"The magnetostriction in electrical steel under rotational magnetization is usually measured with cross-shaped samples. However, the inhomogeneity of the magnetization and stress in the sample might hinder the measured results. In this paper, we investigate this phenomenon by using a magneto-mechanically coupled energy-based model to simulate the sample in a single sheet tester measurement setup, and compare the simulations and measurements. The results show that some anomalies in the measured magnetostriction can be explained by the inhomogeneous magnetization in the sample and the form effect, which result in inhomogeneous stresses and thus affect the observed quantities. The validity of the model as well as the presented statements are ascertained through experiments on the single sheet tester. The backgrounds of the used modelization technique are also detailed.","PeriodicalId":52331,"journal":{"name":"Rakenteiden Mekaniikka","volume":"51 1","pages":"27-35"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rakenteiden Mekaniikka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23998/RM.69204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The magnetostriction in electrical steel under rotational magnetization is usually measured with cross-shaped samples. However, the inhomogeneity of the magnetization and stress in the sample might hinder the measured results. In this paper, we investigate this phenomenon by using a magneto-mechanically coupled energy-based model to simulate the sample in a single sheet tester measurement setup, and compare the simulations and measurements. The results show that some anomalies in the measured magnetostriction can be explained by the inhomogeneous magnetization in the sample and the form effect, which result in inhomogeneous stresses and thus affect the observed quantities. The validity of the model as well as the presented statements are ascertained through experiments on the single sheet tester. The backgrounds of the used modelization technique are also detailed.