Identification of Physical Parameters of a Porous Material Located in a Duct by Inverse Methods

IF 0.6 4区 物理与天体物理 Q4 ACOUSTICS
Marwa Kani, Amine Makni, M. Taktak, M. Chaâbane, M. Haddar
{"title":"Identification of Physical Parameters of a Porous Material Located in a Duct by Inverse Methods","authors":"Marwa Kani, Amine Makni, M. Taktak, M. Chaâbane, M. Haddar","doi":"10.24425/aoa.2021.139642","DOIUrl":null,"url":null,"abstract":"Lined ducts with porous materials are found in many industrial applications. To understand and simulate the acoustic behaviour of these kinds of materials, their intrinsic physical parameters must be identified. Recent studies have shown the reliability of the inverse approach for the determination of these parameters. Therefore, in the present paper, two inverse techniques are proposed: the first is the multilevel identification method based on the simplex optimisation algorithm and the second one is based on the genetic algorithm. These methods are used of the physical parameters of a simulated case of a porous material located in a duct by the computation of its acoustic transfer, scattering, and power attenuation. The results obtained by these methods are compared and discussed to choose the more efficient one.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Acoustics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.24425/aoa.2021.139642","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1

Abstract

Lined ducts with porous materials are found in many industrial applications. To understand and simulate the acoustic behaviour of these kinds of materials, their intrinsic physical parameters must be identified. Recent studies have shown the reliability of the inverse approach for the determination of these parameters. Therefore, in the present paper, two inverse techniques are proposed: the first is the multilevel identification method based on the simplex optimisation algorithm and the second one is based on the genetic algorithm. These methods are used of the physical parameters of a simulated case of a porous material located in a duct by the computation of its acoustic transfer, scattering, and power attenuation. The results obtained by these methods are compared and discussed to choose the more efficient one.
基于逆方法的管道内多孔材料物性参数识别
多孔材料内衬管道在许多工业应用中都有。为了理解和模拟这类材料的声学行为,必须识别它们的固有物理参数。最近的研究表明,逆方法用于确定这些参数是可靠的。因此,在本文中,提出了两种逆技术:第一种是基于单纯形优化算法的多级识别方法,第二种是基于遗传算法。这些方法是通过计算管道中多孔材料的声学传递、散射和功率衰减来使用多孔材料模拟情况的物理参数。对这些方法获得的结果进行了比较和讨论,以选择更有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Acoustics
Archives of Acoustics 物理-声学
CiteScore
1.80
自引率
11.10%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Archives of Acoustics, the peer-reviewed quarterly journal publishes original research papers from all areas of acoustics like: acoustical measurements and instrumentation, acoustics of musics, acousto-optics, architectural, building and environmental acoustics, bioacoustics, electroacoustics, linear and nonlinear acoustics, noise and vibration, physical and chemical effects of sound, physiological acoustics, psychoacoustics, quantum acoustics, speech processing and communication systems, speech production and perception, transducers, ultrasonics, underwater acoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信