Impact of dose calculation accuracy on inverse linear energy transfer optimization for intensity-modulated proton therapy.

IF 2.1 Q4 Medicine
Precision Radiation Oncology Pub Date : 2022-12-08 eCollection Date: 2023-03-01 DOI:10.1002/pro6.1179
Mei Chen, Wenhua Cao, Pablo Yepes, Fada Guan, Falk Poenisch, Cheng Xu, Jiayi Chen, Yupeng Li, Ivan Vazquez, Ming Yang, X Ronald Zhu, Xiaodong Zhang
{"title":"Impact of dose calculation accuracy on inverse linear energy transfer optimization for intensity-modulated proton therapy.","authors":"Mei Chen, Wenhua Cao, Pablo Yepes, Fada Guan, Falk Poenisch, Cheng Xu, Jiayi Chen, Yupeng Li, Ivan Vazquez, Ming Yang, X Ronald Zhu, Xiaodong Zhang","doi":"10.1002/pro6.1179","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To determine the effect of dose calculation accuracy on inverse linear energy transfer (LET) optimization for intensity-modulated proton therapy, and to determine whether adding more beams would improve the plan robustness to different dose calculation engines.</p><p><strong>Methods: </strong>Two sets of intensity-modulated proton therapy plans using two, four, six, and nine beams were created for 10 prostate cancer patients: one set was optimized with dose constraints (DoseOpt) using the pencil beam (PB) algorithm, and the other set was optimized with additional LET constraints (LETOpt) using the Monte Carlo (MC) algorithm. Dose distributions of DoseOpt plans were then recalculated using the MC algorithm, and the LETOpt plans were recalculated using the PB algorithm. Dosimetric indices of targets and critical organs were compared between the PB and MC algorithms for both sets of plans.</p><p><strong>Results: </strong>For DoseOpt plans, dose differences between the PB and MC algorithms were minimal. However, the maximum dose differences in LETOpt plans were 11.11% and 15.85% in the dose covering 98% and 2% (D2) of the clinical target volume, respectively. Furthermore, the dose to 1 cc of the bladder differed by 11.42 Gy (relative biological effectiveness). Adding more beams reduced the discrepancy in target coverage, but the errors in D2 of the structure were increased with the number of beams.</p><p><strong>Conclusion: </strong>High modulation of LET requires high dose calculation accuracy during the optimization and final dose calculation in the inverse treatment planning for intensity-modulated proton therapy, and adding more beams did not improve the plan robustness to different dose calculation algorithms.</p>","PeriodicalId":32406,"journal":{"name":"Precision Radiation Oncology","volume":"7 1","pages":"36-44"},"PeriodicalIF":2.1000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11935249/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pro6.1179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To determine the effect of dose calculation accuracy on inverse linear energy transfer (LET) optimization for intensity-modulated proton therapy, and to determine whether adding more beams would improve the plan robustness to different dose calculation engines.

Methods: Two sets of intensity-modulated proton therapy plans using two, four, six, and nine beams were created for 10 prostate cancer patients: one set was optimized with dose constraints (DoseOpt) using the pencil beam (PB) algorithm, and the other set was optimized with additional LET constraints (LETOpt) using the Monte Carlo (MC) algorithm. Dose distributions of DoseOpt plans were then recalculated using the MC algorithm, and the LETOpt plans were recalculated using the PB algorithm. Dosimetric indices of targets and critical organs were compared between the PB and MC algorithms for both sets of plans.

Results: For DoseOpt plans, dose differences between the PB and MC algorithms were minimal. However, the maximum dose differences in LETOpt plans were 11.11% and 15.85% in the dose covering 98% and 2% (D2) of the clinical target volume, respectively. Furthermore, the dose to 1 cc of the bladder differed by 11.42 Gy (relative biological effectiveness). Adding more beams reduced the discrepancy in target coverage, but the errors in D2 of the structure were increased with the number of beams.

Conclusion: High modulation of LET requires high dose calculation accuracy during the optimization and final dose calculation in the inverse treatment planning for intensity-modulated proton therapy, and adding more beams did not improve the plan robustness to different dose calculation algorithms.

剂量计算精度对调强质子治疗逆线性能量传递优化的影响
确定剂量计算精度对强度调制质子治疗的逆线性能量转移(LET)优化的影响,并确定增加更多的光束是否会提高计划对不同剂量计算引擎的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Precision Radiation Oncology
Precision Radiation Oncology Medicine-Oncology
CiteScore
1.20
自引率
0.00%
发文量
32
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信