Deep Learning Measurement Model to Segment the Nuchal Translucency Region for the Early Identification of Down Syndrome

IF 0.8 4区 工程技术 Q4 INSTRUMENTS & INSTRUMENTATION
M. C. Thomas, S. Arjunan
{"title":"Deep Learning Measurement Model to Segment the Nuchal Translucency Region for the Early Identification of Down Syndrome","authors":"M. C. Thomas, S. Arjunan","doi":"10.2478/msr-2022-0023","DOIUrl":null,"url":null,"abstract":"Abstract Down syndrome (DS) or Trisomy 21 is a genetic disorder that causes intellectual and mental disability in fetuses. The most essential marker for detecting DS during the first trimester of pregnancy is nuchal translucency (NT). Effective segmentation of the NT contour from the ultrasound (US) images becomes challenging due to the presence of speckle noise and weak edges. This study presents a Convolutional Neural Network (CNN) based SegNet model using a Visual Geometry Group (VGG-16) for semantically segmenting the NT region from the US fetal images and providing a fast and affordable diagnosis during the early stages of gestation. A transfer learning approach using AlexNet is implemented to train the NT segmented regions for the identification of DS. The proposed model achieved a Jaccard index of 0.96 and classification accuracy of 91.7 %, sensitivity of 85.7 %, and a Receiver operating characteristic (ROC) of 0.95.","PeriodicalId":49848,"journal":{"name":"Measurement Science Review","volume":"22 1","pages":"187 - 192"},"PeriodicalIF":0.8000,"publicationDate":"2022-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/msr-2022-0023","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract Down syndrome (DS) or Trisomy 21 is a genetic disorder that causes intellectual and mental disability in fetuses. The most essential marker for detecting DS during the first trimester of pregnancy is nuchal translucency (NT). Effective segmentation of the NT contour from the ultrasound (US) images becomes challenging due to the presence of speckle noise and weak edges. This study presents a Convolutional Neural Network (CNN) based SegNet model using a Visual Geometry Group (VGG-16) for semantically segmenting the NT region from the US fetal images and providing a fast and affordable diagnosis during the early stages of gestation. A transfer learning approach using AlexNet is implemented to train the NT segmented regions for the identification of DS. The proposed model achieved a Jaccard index of 0.96 and classification accuracy of 91.7 %, sensitivity of 85.7 %, and a Receiver operating characteristic (ROC) of 0.95.
用于早期识别唐氏综合症的颈部半透明区域分割的深度学习测量模型
摘要唐氏综合征(DS)或21三体是一种导致胎儿智力和精神残疾的遗传疾病。在妊娠早期检测DS最重要的标志物是颈部半透明(NT)。由于斑点噪声和弱边缘的存在,从超声(US)图像中有效分割NT轮廓变得具有挑战性。本研究提出了一种基于卷积神经网络(CNN)的SegNet模型,该模型使用视觉几何组(VGG-16)从美国胎儿图像中语义分割NT区域,并在妊娠早期提供快速且负担得起的诊断。使用AlexNet实现了一种迁移学习方法来训练NT个分割区域,用于识别DS。该模型的Jaccard指数为0.96,分类准确率为91.7%,灵敏度为85.7%,受试者工作特性(ROC)为0.95。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Measurement Science Review
Measurement Science Review INSTRUMENTS & INSTRUMENTATION-
CiteScore
2.00
自引率
11.10%
发文量
37
审稿时长
4.8 months
期刊介绍: - theory of measurement - mathematical processing of measured data - measurement uncertainty minimisation - statistical methods in data evaluation and modelling - measurement as an interdisciplinary activity - measurement science in education - medical imaging methods, image processing - biosignal measurement, processing and analysis - model based biomeasurements - neural networks in biomeasurement - telemeasurement in biomedicine - measurement in nanomedicine - measurement of basic physical quantities - magnetic and electric fields measurements - measurement of geometrical and mechanical quantities - optical measuring methods - electromagnetic compatibility - measurement in material science
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信