Weizhan Wang, Peng Tian, Wenjie Lu, F. Meng, Zhigang Chen, T. Zhao
{"title":"On the penetration efficiency of ceramic fragments through steel targets","authors":"Weizhan Wang, Peng Tian, Wenjie Lu, F. Meng, Zhigang Chen, T. Zhao","doi":"10.1515/ijnsns-2021-0430","DOIUrl":null,"url":null,"abstract":"Abstract The penetration efficiency of novel ceramic fragments should be investigated, and their weapon damage effectiveness must be evaluated. In this study, the efficiency of ceramic fragments in penetrating steel targets were analyzed through ballistic impact tests and numerical simulations. The penetration patterns of these ceramic fragments through steel targets indicate significant perforation. It was deduced that the thicker the steel target, the greater the ability of ZrO2 ceramic fragments to penetrate. Results indicate that the thicker the steel target, the greater the ability of ZrO2 ceramic fragments to expand their perforation, while that of Al2O3 ceramic fragments is reduced as the thickness of the steel target is increased. In addition, the number of projectiles triggered by the perforation of the two ceramic fragments behind the targets decreases as the thickness of the steel target increases. Thus, the higher the impact velocity, the larger the perforation diameter of the ceramic fragments, and the larger the number of projectiles behind the target. Under the same impact velocity, the penetration ability of a ZrO2 ceramic fragment on steel targets was better than that of an Al2O3 ceramic fragment, and the number of projectiles behind the target was greater.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0430","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The penetration efficiency of novel ceramic fragments should be investigated, and their weapon damage effectiveness must be evaluated. In this study, the efficiency of ceramic fragments in penetrating steel targets were analyzed through ballistic impact tests and numerical simulations. The penetration patterns of these ceramic fragments through steel targets indicate significant perforation. It was deduced that the thicker the steel target, the greater the ability of ZrO2 ceramic fragments to penetrate. Results indicate that the thicker the steel target, the greater the ability of ZrO2 ceramic fragments to expand their perforation, while that of Al2O3 ceramic fragments is reduced as the thickness of the steel target is increased. In addition, the number of projectiles triggered by the perforation of the two ceramic fragments behind the targets decreases as the thickness of the steel target increases. Thus, the higher the impact velocity, the larger the perforation diameter of the ceramic fragments, and the larger the number of projectiles behind the target. Under the same impact velocity, the penetration ability of a ZrO2 ceramic fragment on steel targets was better than that of an Al2O3 ceramic fragment, and the number of projectiles behind the target was greater.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.