Stefan Bürgmayr, Joanne Tanner, W. Batchelor, A. Hoadley
{"title":"CaCO3 solubility in the process water of recycled containerboard mills","authors":"Stefan Bürgmayr, Joanne Tanner, W. Batchelor, A. Hoadley","doi":"10.1515/npprj-2022-0042","DOIUrl":null,"url":null,"abstract":"Abstract Water system closure in recycled containerboard mills may have reached a technical limit due to the accumulation of organic and inorganic contaminants in the process water. The specific water chemistry characteristics of recycled containerboard mills with restricted water systems were analyzed and a computer model was developed to simulate calcium carbonate solubility in the presence of volatile fatty acids under relevant mill conditions. A strong linear correlation between VFAs and calcium ions was found. The calcium carbonate dissolution mechanism, solubility, and precipitation were investigated. The reaction of VFAs with calcium carbonate results in the formation of bicarbonate and carbonic acid. By binding hydrogen ions, the carbonate has a pH buffering effect. The carbonic acid dissociates into water and CO2. Gaseous CO2 escapes from the water and leads to decarbonization. This mechanism is responsible for the uncoupling of pH from the concentration of VFAs, as well as from the concentration of dissolved calcium ions. The resulting lack of carbonates prevents the precipitation of calcium carbonate. The introduction of CO2 contained in the biogas produced in anaerobic biological water treatment reverses the dissolution mechanism and causes the precipitation of calcium carbonate. Concentrating technologies such as membrane filtration and evaporation may therefore meet the specific requirements for complete water system closure in recycled containerboard mills better than current commonly used biological treatment.","PeriodicalId":19315,"journal":{"name":"Nordic Pulp & Paper Research Journal","volume":"38 1","pages":"181 - 195"},"PeriodicalIF":0.9000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nordic Pulp & Paper Research Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/npprj-2022-0042","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Water system closure in recycled containerboard mills may have reached a technical limit due to the accumulation of organic and inorganic contaminants in the process water. The specific water chemistry characteristics of recycled containerboard mills with restricted water systems were analyzed and a computer model was developed to simulate calcium carbonate solubility in the presence of volatile fatty acids under relevant mill conditions. A strong linear correlation between VFAs and calcium ions was found. The calcium carbonate dissolution mechanism, solubility, and precipitation were investigated. The reaction of VFAs with calcium carbonate results in the formation of bicarbonate and carbonic acid. By binding hydrogen ions, the carbonate has a pH buffering effect. The carbonic acid dissociates into water and CO2. Gaseous CO2 escapes from the water and leads to decarbonization. This mechanism is responsible for the uncoupling of pH from the concentration of VFAs, as well as from the concentration of dissolved calcium ions. The resulting lack of carbonates prevents the precipitation of calcium carbonate. The introduction of CO2 contained in the biogas produced in anaerobic biological water treatment reverses the dissolution mechanism and causes the precipitation of calcium carbonate. Concentrating technologies such as membrane filtration and evaporation may therefore meet the specific requirements for complete water system closure in recycled containerboard mills better than current commonly used biological treatment.
期刊介绍:
Nordic Pulp & Paper Research Journal (NPPRJ) is a peer-reviewed, international scientific journal covering to-date science and technology research in the areas of wood-based biomass:
Pulp and paper: products and processes
Wood constituents: characterization and nanotechnologies
Bio-refining, recovery and energy issues
Utilization of side-streams from pulping processes
Novel fibre-based, sustainable and smart materials.
The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.
Topics
Cutting-edge topics such as, but not limited to, the following:
Biorefining, energy issues
Wood fibre characterization and nanotechnology
Side-streams and new products from wood pulping processes
Mechanical pulping
Chemical pulping, recovery and bleaching
Paper technology
Paper chemistry and physics
Coating
Paper-ink-interactions
Recycling
Environmental issues.