Jingwei Chen, Gupta Adit, Lun Li, Yingxin Zhang, Daniel H. C. Chua, Pooi See Lee
{"title":"Optimization Strategies Toward Functional Sodium-Ion Batteries","authors":"Jingwei Chen, Gupta Adit, Lun Li, Yingxin Zhang, Daniel H. C. Chua, Pooi See Lee","doi":"10.1002/eem2.12633","DOIUrl":null,"url":null,"abstract":"<p>Exploration of alternative energy storage systems has been more than necessary in view of the supply risks haunting lithium-ion batteries. Among various alternative electrochemical energy storage devices, sodium-ion battery outstands with advantages of cost-effectiveness and comparable energy density with lithium-ion batteries. Thanks to the similar electrochemical mechanism, the research and development of lithium-ion batteries have forged a solid foundation for sodium-ion battery explorations. Advancements in sodium-ion batteries have been witnessed in terms of superior electrochemical performance and broader application scenarios. Here, the strategies adopted to optimize the battery components (cathode, anode, electrolyte, separator, binder, current collector, etc.) and the cost, safety, and commercialization issues in sodium-ion batteries are summarized and discussed. Based on these optimization strategies, assembly of functional (flexible, stretchable, self-healable, and self-chargeable) and integrated sodium-ion batteries (−actuators, −sensors, electrochromic, etc.) have been realized. Despite these achievements, challenges including energy density, scalability, trade-off between energy density and functionality, cost, etc. are to be addressed for sodium-ion battery commercialization. This review aims at providing an overview of the up-to-date achievements in sodium-ion batteries and serves to inspire more efforts in designing upgraded sodium-ion batteries.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"6 4","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12633","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12633","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7
Abstract
Exploration of alternative energy storage systems has been more than necessary in view of the supply risks haunting lithium-ion batteries. Among various alternative electrochemical energy storage devices, sodium-ion battery outstands with advantages of cost-effectiveness and comparable energy density with lithium-ion batteries. Thanks to the similar electrochemical mechanism, the research and development of lithium-ion batteries have forged a solid foundation for sodium-ion battery explorations. Advancements in sodium-ion batteries have been witnessed in terms of superior electrochemical performance and broader application scenarios. Here, the strategies adopted to optimize the battery components (cathode, anode, electrolyte, separator, binder, current collector, etc.) and the cost, safety, and commercialization issues in sodium-ion batteries are summarized and discussed. Based on these optimization strategies, assembly of functional (flexible, stretchable, self-healable, and self-chargeable) and integrated sodium-ion batteries (−actuators, −sensors, electrochromic, etc.) have been realized. Despite these achievements, challenges including energy density, scalability, trade-off between energy density and functionality, cost, etc. are to be addressed for sodium-ion battery commercialization. This review aims at providing an overview of the up-to-date achievements in sodium-ion batteries and serves to inspire more efforts in designing upgraded sodium-ion batteries.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.