{"title":"Study of a fuse-polymerised inorganic glassy compound as a hot rolling lubricant","authors":"Zhihua Xu, Shaogang Cui, Yahui Niu, Wei Li","doi":"10.1002/ls.1623","DOIUrl":null,"url":null,"abstract":"<p>This study had investigated the main degradation mechanism of a roll in hot rolling process, to reduce the wear and oxidation, a type of low-melting glass fabricated by the fuse-polymerisation method was tested as a hot metal forming lubricant by a ball-on-disc tribometer at high temperature. The results revealed that the roll degrades mainly due to the cracks initiated at the interface of carbides/matrix on the roll surface, then propagate along the interface, and being sheared off when the cracks confluence in the subsurface. The high-speed steel (HSS) starts to be oxidised at 500°C, and grows heavily with increasing temperature. The recommended lubricant presented a desired lubrication behaviour for hot rolling process that generating a higher friction coefficient at low temperature and a lower one at high temperature. The friction coefficient, wear rate, and oxidation of HSS roll was reduced materially, which meets the requirements of hot rolling lubricant well.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1623","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1
Abstract
This study had investigated the main degradation mechanism of a roll in hot rolling process, to reduce the wear and oxidation, a type of low-melting glass fabricated by the fuse-polymerisation method was tested as a hot metal forming lubricant by a ball-on-disc tribometer at high temperature. The results revealed that the roll degrades mainly due to the cracks initiated at the interface of carbides/matrix on the roll surface, then propagate along the interface, and being sheared off when the cracks confluence in the subsurface. The high-speed steel (HSS) starts to be oxidised at 500°C, and grows heavily with increasing temperature. The recommended lubricant presented a desired lubrication behaviour for hot rolling process that generating a higher friction coefficient at low temperature and a lower one at high temperature. The friction coefficient, wear rate, and oxidation of HSS roll was reduced materially, which meets the requirements of hot rolling lubricant well.
期刊介绍:
Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development.
Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on:
Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives.
State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces.
Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles.
Gas lubrication.
Extreme-conditions lubrication.
Green-lubrication technology and lubricants.
Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions.
Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural.
Modelling hydrodynamic and thin film lubrication.
All lubrication related aspects of nanotribology.
Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption.
Bio-lubrication, bio-lubricants and lubricated biological systems.
Other novel and cutting-edge aspects of lubrication in all lubrication regimes.