Vincent Visconti, Emmanuel Coton, Karim Rigalma, Philippe Dantigny
{"title":"Effects of disinfectants on inactivation of mold spores relevant to the food industry: a review","authors":"Vincent Visconti, Emmanuel Coton, Karim Rigalma, Philippe Dantigny","doi":"10.1016/j.fbr.2021.09.004","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Due to the dissemination of airborne conidia and </span>spores<span><span><span>, molds can contaminate various surfaces. In the food industry sector, their presence and development can have health and economic implications. In order to control these undesirable microorganisms, various approaches can be used but the main one relies on the use of disinfectants. The objective of this review is to report the existing studies on the effect of various disinfectant molecules (i.e., </span>sodium hypochlorite, chlorine dioxide, ethanol and other alcohols, hydrogen peroxide, peracetic acid, and quaternary ammonium compounds) on the inactivation of </span>fungal spores<span>. These studies were sorted depending on the targeted fungal species. Noteworthy, in the food industry, four log and three log reductions are required to claim a fungicidal activity for suspension (European Standard 1650, 2019) and surface (European Standard 13697/IN1, 2019) treatments, respectively. Most of the presented studies concerned </span></span></span><span><em>Penicillium</em></span> and <span><em>Aspergillus</em></span><span> species (44 and 31% of the literature, respectively). In general, for a given disinfection<span> procedure, ascospores were more resistant than conidia, and </span></span><em>Aspergillus</em> conidia were more resistant than <em>Penicillium</em> ones. However, the variability of encountered molds (e.g. species, strains, physiological state) and disinfection procedures (e.g. molecules, concentrations, contact time) affected the efficacy of disinfectants.</p></div>","PeriodicalId":12563,"journal":{"name":"Fungal Biology Reviews","volume":"38 ","pages":"Pages 44-66"},"PeriodicalIF":5.7000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1749461321000440","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 7
Abstract
Due to the dissemination of airborne conidia and spores, molds can contaminate various surfaces. In the food industry sector, their presence and development can have health and economic implications. In order to control these undesirable microorganisms, various approaches can be used but the main one relies on the use of disinfectants. The objective of this review is to report the existing studies on the effect of various disinfectant molecules (i.e., sodium hypochlorite, chlorine dioxide, ethanol and other alcohols, hydrogen peroxide, peracetic acid, and quaternary ammonium compounds) on the inactivation of fungal spores. These studies were sorted depending on the targeted fungal species. Noteworthy, in the food industry, four log and three log reductions are required to claim a fungicidal activity for suspension (European Standard 1650, 2019) and surface (European Standard 13697/IN1, 2019) treatments, respectively. Most of the presented studies concerned Penicillium and Aspergillus species (44 and 31% of the literature, respectively). In general, for a given disinfection procedure, ascospores were more resistant than conidia, and Aspergillus conidia were more resistant than Penicillium ones. However, the variability of encountered molds (e.g. species, strains, physiological state) and disinfection procedures (e.g. molecules, concentrations, contact time) affected the efficacy of disinfectants.
期刊介绍:
Fungal Biology Reviews is an international reviews journal, owned by the British Mycological Society. Its objective is to provide a forum for high quality review articles within fungal biology. It covers all fields of fungal biology, whether fundamental or applied, including fungal diversity, ecology, evolution, physiology and ecophysiology, biochemistry, genetics and molecular biology, cell biology, interactions (symbiosis, pathogenesis etc), environmental aspects, biotechnology and taxonomy. It considers aspects of all organisms historically or recently recognized as fungi, including lichen-fungi, microsporidia, oomycetes, slime moulds, stramenopiles, and yeasts.