{"title":"Modeling impact of culture facilities on hydrodynamics and solute transport in marine aquaculture waters of North Yellow Sea","authors":"Heng-zhi Jiang , Yong-peng Ji , Ming-liang Zhang","doi":"10.1016/j.wse.2022.10.005","DOIUrl":null,"url":null,"abstract":"<div><p>An increasing number of marine aquaculture facilities have been placed in shallow bays and open sea, which might significantly affect hydrodynamic and solute transport processes in marine aquaculture waters. In this study, a coupled hydrodynamic and solute transport model was developed with high-resolution schemes in marine aquaculture waters based on depth-averaged shallow water equations. A new expression of drag force was incorporated into the momentum equations to express the resistance of suspended culture cages. The coupled model was used to simulate the effect of suspended structures on tidal currents and the movement of a contaminant cloud in the marine aquaculture of the North Yellow Sea, China. The simulation results showed a low-velocity area appearing inside the aquaculture cage area, with a maximum reduction rate of velocity close to 45% under high-density culture. The results also showed that tidal currents were sensitive to the density of suspended cages, the length of cages, and the drag coefficients of cages. The transport processes of pollutants inside aquaculture facilities were inhibited away from the vicinity of the culture cage area because of the diminished tidal currents. Therefore, the suspended cages significantly affected the transport processes of pollutants in the coastal aquaculture waters. Furthermore, the reduced horizontal velocity significantly decreased the food supply for the aquaculture areas from the surrounding sea.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"16 1","pages":"Pages 26-35"},"PeriodicalIF":3.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674237022000886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 2
Abstract
An increasing number of marine aquaculture facilities have been placed in shallow bays and open sea, which might significantly affect hydrodynamic and solute transport processes in marine aquaculture waters. In this study, a coupled hydrodynamic and solute transport model was developed with high-resolution schemes in marine aquaculture waters based on depth-averaged shallow water equations. A new expression of drag force was incorporated into the momentum equations to express the resistance of suspended culture cages. The coupled model was used to simulate the effect of suspended structures on tidal currents and the movement of a contaminant cloud in the marine aquaculture of the North Yellow Sea, China. The simulation results showed a low-velocity area appearing inside the aquaculture cage area, with a maximum reduction rate of velocity close to 45% under high-density culture. The results also showed that tidal currents were sensitive to the density of suspended cages, the length of cages, and the drag coefficients of cages. The transport processes of pollutants inside aquaculture facilities were inhibited away from the vicinity of the culture cage area because of the diminished tidal currents. Therefore, the suspended cages significantly affected the transport processes of pollutants in the coastal aquaculture waters. Furthermore, the reduced horizontal velocity significantly decreased the food supply for the aquaculture areas from the surrounding sea.
期刊介绍:
Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.