A history of solar activity over millennia

IF 23 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Ilya G. Usoskin
{"title":"A history of solar activity over millennia","authors":"Ilya G. Usoskin","doi":"10.1007/s41116-017-0006-9","DOIUrl":null,"url":null,"abstract":"<p>Presented here is a review of present knowledge of the long-term behavior of solar activity on a multi-millennial timescale, as reconstructed using the indirect proxy method. The concept of solar activity is discussed along with an overview of the special indices used to quantify different aspects of variable solar activity, with special emphasis upon sunspot number. Over long timescales, quantitative information about past solar activity can only be obtained using a method based upon indirect proxies, such as the cosmogenic isotopes <span>\\(^{14}\\)</span>C and <span>\\(^{10}\\)</span>Be in natural stratified archives (e.g., tree rings or ice cores). We give an historical overview of the development of the proxy-based method for past solar-activity reconstruction over millennia, as well as a description of the modern state. Special attention is paid to the verification and cross-calibration of reconstructions. It is argued that this method of cosmogenic isotopes makes a solid basis for studies of solar variability in the past on a long timescale (centuries to millennia) during the Holocene. A separate section is devoted to reconstructions of strong solar energetic-particle (SEP) events in the past, that suggest that the present-day average SEP flux is broadly consistent with estimates on longer timescales, and that the occurrence of extra-strong events is unlikely. Finally, the main features of the long-term evolution of solar magnetic activity, including the statistics of grand minima and maxima occurrence, are summarized and their possible implications, especially for solar/stellar dynamo theory, are discussed.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"14 1","pages":""},"PeriodicalIF":23.0000,"publicationDate":"2017-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41116-017-0006-9","citationCount":"210","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Living Reviews in Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s41116-017-0006-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 210

Abstract

Presented here is a review of present knowledge of the long-term behavior of solar activity on a multi-millennial timescale, as reconstructed using the indirect proxy method. The concept of solar activity is discussed along with an overview of the special indices used to quantify different aspects of variable solar activity, with special emphasis upon sunspot number. Over long timescales, quantitative information about past solar activity can only be obtained using a method based upon indirect proxies, such as the cosmogenic isotopes \(^{14}\)C and \(^{10}\)Be in natural stratified archives (e.g., tree rings or ice cores). We give an historical overview of the development of the proxy-based method for past solar-activity reconstruction over millennia, as well as a description of the modern state. Special attention is paid to the verification and cross-calibration of reconstructions. It is argued that this method of cosmogenic isotopes makes a solid basis for studies of solar variability in the past on a long timescale (centuries to millennia) during the Holocene. A separate section is devoted to reconstructions of strong solar energetic-particle (SEP) events in the past, that suggest that the present-day average SEP flux is broadly consistent with estimates on longer timescales, and that the occurrence of extra-strong events is unlikely. Finally, the main features of the long-term evolution of solar magnetic activity, including the statistics of grand minima and maxima occurrence, are summarized and their possible implications, especially for solar/stellar dynamo theory, are discussed.

Abstract Image

太阳活动几千年的历史
本文介绍了利用间接代理方法重建的几千年时间尺度上太阳活动的长期行为的现有知识。讨论了太阳活动的概念,并概述了用于量化可变太阳活动不同方面的特殊指数,特别强调了太阳黑子数。在长时间尺度上,关于过去太阳活动的定量信息只能通过基于间接代理的方法获得,例如自然分层档案(如树轮或冰芯)中的宇宙成因同位素\(^{14}\) C和\(^{10}\) be。我们对几千年来基于代理的太阳活动重建方法的发展进行了历史概述,并对现代状态进行了描述。特别注意重建的验证和交叉校准。有人认为,这种宇宙成因同位素的方法为在全新世期间研究过去很长时间尺度(几百到几千年)的太阳变化奠定了坚实的基础。一个单独的部分专门用于重建过去的强太阳能量粒子(SEP)事件,这表明,目前的平均SEP通量与较长时间尺度上的估计大致一致,并且超强事件的发生是不可能的。最后,总结了太阳磁活动长期演变的主要特征,包括极大极小期和极大极小期的统计数据,并讨论了它们可能的意义,特别是对太阳/恒星发电机理论的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Living Reviews in Solar Physics
Living Reviews in Solar Physics Earth and Planetary Sciences-Space and Planetary Science
CiteScore
41.90
自引率
1.40%
发文量
3
审稿时长
20 weeks
期刊介绍: Living Reviews in Solar Physics is a peer-reviewed, full open access, and exclusively online journal, publishing freely available reviews of research in all areas of solar and heliospheric physics. Articles are solicited from leading authorities and are directed towards the scientific community at or above the graduate-student level. The articles in Living Reviews provide critical reviews of the current state of research in the fields they cover. They evaluate existing work, place it in a meaningful context, and suggest areas where more work and new results are needed. Articles also offer annotated insights into the key literature and describe other available resources. Living Reviews is unique in maintaining a suite of high-quality reviews, which are kept up-to-date by the authors. This is the meaning of the word "living" in the journal''s title.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信