{"title":"Low-operating-energy directly modulated lasers for short-distance optical interconnects","authors":"S. Matsuo, T. Kakitsuka","doi":"10.1364/AOP.10.000567","DOIUrl":null,"url":null,"abstract":"We review recent developments in directly modulated lasers (DMLs) with low operating energy for datacom and computercom applications. Key issues are their operating energy and the cost for employing them in these applications. To decrease the operating energy, it is important to reduce the active volume of the laser while maintaining the cavity Q-factor or photon lifetime in the cavity. Therefore, how to achieve high-reflectivity mirrors has been the main challenge in reducing the operating energy. In terms of the required output power from the lasers, the required input power into the photodetector and the transmission distance determine the lower limit of laser active volume. Therefore, the operating energy and output power are in a trade-off relationship. In designing the lasers, the cavity volume, quantum well number, and optical confinement factor are critical parameters. For reducing the cost, it is important to fabricate a large-scale photonic integrated circuit (PIC) comprising DMLs, an optical multiplexer, and monitor photodetectors because the lower assembly cost reduces the overall cost. In this context, silicon (Si) photonics technology plays a key role in fabricating large-scale PICs with low cost, and heterogeneous integration of DMLs and Si photonics devices has attracted much attention. We will describe fabrication technologies for heterogeneous integration and experimental results for DMLs on a Si substrate.","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":null,"pages":null},"PeriodicalIF":25.2000,"publicationDate":"2018-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1364/AOP.10.000567","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Optics and Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/AOP.10.000567","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 41
Abstract
We review recent developments in directly modulated lasers (DMLs) with low operating energy for datacom and computercom applications. Key issues are their operating energy and the cost for employing them in these applications. To decrease the operating energy, it is important to reduce the active volume of the laser while maintaining the cavity Q-factor or photon lifetime in the cavity. Therefore, how to achieve high-reflectivity mirrors has been the main challenge in reducing the operating energy. In terms of the required output power from the lasers, the required input power into the photodetector and the transmission distance determine the lower limit of laser active volume. Therefore, the operating energy and output power are in a trade-off relationship. In designing the lasers, the cavity volume, quantum well number, and optical confinement factor are critical parameters. For reducing the cost, it is important to fabricate a large-scale photonic integrated circuit (PIC) comprising DMLs, an optical multiplexer, and monitor photodetectors because the lower assembly cost reduces the overall cost. In this context, silicon (Si) photonics technology plays a key role in fabricating large-scale PICs with low cost, and heterogeneous integration of DMLs and Si photonics devices has attracted much attention. We will describe fabrication technologies for heterogeneous integration and experimental results for DMLs on a Si substrate.
期刊介绍:
Advances in Optics and Photonics (AOP) is an all-electronic journal that publishes comprehensive review articles and multimedia tutorials. It is suitable for students, researchers, faculty, business professionals, and engineers interested in optics and photonics. The content of the journal covers advancements in these fields, ranging from fundamental science to engineering applications.
The journal aims to capture the most significant developments in optics and photonics. It achieves this through long review articles and comprehensive tutorials written by prominent and respected authors who are at the forefront of their fields.
The journal goes beyond traditional text-based articles by enhancing the content with multimedia elements, such as animation and video. This multimedia approach helps to enhance the understanding and visualization of complex concepts.
AOP offers dedicated article preparation and peer-review support to assist authors throughout the publication process. This support ensures that the articles meet the journal's standards and are well-received by readers.
Additionally, AOP welcomes comments on published review articles, encouraging further discussions and insights from the scientific community.
In summary, Advances in Optics and Photonics is a comprehensive journal that provides authoritative and accessible content on advancements in optics and photonics. With its diverse range of articles, multimedia enhancements, and dedicated support, AOP serves as a valuable resource for professionals and researchers in these fields.