Virginia Puyana-Romero, Jorge Santiago Arroyo Chuquín, Saúl Israel Méndez Chicaiza, Giuseppe Ciaburro
{"title":"Characterization and Simulation of Acoustic Properties of Sugarcane Bagasse-Based Composite Using Artificial Neural Network Model","authors":"Virginia Puyana-Romero, Jorge Santiago Arroyo Chuquín, Saúl Israel Méndez Chicaiza, Giuseppe Ciaburro","doi":"10.3390/fib11020018","DOIUrl":null,"url":null,"abstract":"Environmental sustainability and environmental protection represent essential challenges for the well-being of the community. The use of eco-sustainable materials in architecture is necessary for the transformation of urban centers into modern sustainable cities, to reduce air pollution and protect natural ecosystems, decrease greenhouse gas emissions and improve the energy efficiency of buildings. In this study, sugar cane processing waste was used as an alternative and ecological acoustic material, combining it with natural binders used in construction, such as plaster and clay. To make the composite, the fibers were separated from the bark, then the fibers were assembled with the binder in the frames, and finally the frame with the composite was subjected to a drying process. Specimens of various thicknesses were prepared and the sound absorption coefficient (SAC) at normal incidence was calculated. Subsequently, to compare the acoustic performances of the samples, a simulation model for the prediction of the SAC based on the artificial neural network (ANN) was created. The results suggest the adoption of the simulation model to review the acoustic properties of the material.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":"1 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib11020018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Environmental sustainability and environmental protection represent essential challenges for the well-being of the community. The use of eco-sustainable materials in architecture is necessary for the transformation of urban centers into modern sustainable cities, to reduce air pollution and protect natural ecosystems, decrease greenhouse gas emissions and improve the energy efficiency of buildings. In this study, sugar cane processing waste was used as an alternative and ecological acoustic material, combining it with natural binders used in construction, such as plaster and clay. To make the composite, the fibers were separated from the bark, then the fibers were assembled with the binder in the frames, and finally the frame with the composite was subjected to a drying process. Specimens of various thicknesses were prepared and the sound absorption coefficient (SAC) at normal incidence was calculated. Subsequently, to compare the acoustic performances of the samples, a simulation model for the prediction of the SAC based on the artificial neural network (ANN) was created. The results suggest the adoption of the simulation model to review the acoustic properties of the material.
FibersEngineering-Civil and Structural Engineering
CiteScore
7.00
自引率
7.70%
发文量
92
审稿时长
11 weeks
期刊介绍:
Fibers (ISSN 2079-6439) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications on the materials science and all other empirical and theoretical studies of fibers, providing a forum for integrating fiber research across many disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. The following topics are relevant and within the scope of this journal: -textile fibers -natural fibers and biological microfibrils -metallic fibers -optic fibers -carbon fibers -silicon carbide fibers -fiberglass -mineral fibers -cellulose fibers -polymer fibers -microfibers, nanofibers and nanotubes -new processing methods for fibers -chemistry of fiber materials -physical properties of fibers -exposure to and toxicology of fibers -biokinetics of fibers -the diversity of fiber origins