Influence of carbon on the dynamic changes in Co oxidation state of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite catalyst during the oxygen reduction and evolution reactions

IF 10.7 Q1 CHEMISTRY, PHYSICAL
EcoMat Pub Date : 2023-04-19 DOI:10.1002/eom2.12353
Casey E. Beall, Emiliana Fabbri, Adam H. Clark, Nur Sena Yüzbasi, Thomas Graule, Thomas J. Schmidt
{"title":"Influence of carbon on the dynamic changes in Co oxidation state of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite catalyst during the oxygen reduction and evolution reactions","authors":"Casey E. Beall,&nbsp;Emiliana Fabbri,&nbsp;Adam H. Clark,&nbsp;Nur Sena Yüzbasi,&nbsp;Thomas Graule,&nbsp;Thomas J. Schmidt","doi":"10.1002/eom2.12353","DOIUrl":null,"url":null,"abstract":"<p>Carbon is often used as a conductive additive in catalyst layers to increase conductivity and catalytic activity. However, the effect of carbon addition to perovskites on the oxygen reduction (ORR) and oxygen evolution (OER) reactions is convoluted. In this work, composites of perovskite Ba<sub>0.5</sub>Sr<sub>0.5</sub>Co<sub>0.8</sub>Fe<sub>0.2</sub>O<sub>3-δ</sub> (BSCF) and conductive additives, carbon and indium doped tin oxide are compared. It is found that the conductive additives have differing effects on the ORR and OER activities and cobalt redox behavior, with carbon having a much more significant effect. In order to elucidate further these differences between BSCF and BSCF/carbon, operando X-ray absorption spectroscopy (XAS) is measured simultaneously with cyclic voltammetry into the ORR and OER regions and the continuous changes in the Co oxidation state are observed with high time resolution. We theorize that carbon is enhancing the Co redox activity and as a result, the ORR and OER activities are likewise improved.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"5 7","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12353","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon is often used as a conductive additive in catalyst layers to increase conductivity and catalytic activity. However, the effect of carbon addition to perovskites on the oxygen reduction (ORR) and oxygen evolution (OER) reactions is convoluted. In this work, composites of perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) and conductive additives, carbon and indium doped tin oxide are compared. It is found that the conductive additives have differing effects on the ORR and OER activities and cobalt redox behavior, with carbon having a much more significant effect. In order to elucidate further these differences between BSCF and BSCF/carbon, operando X-ray absorption spectroscopy (XAS) is measured simultaneously with cyclic voltammetry into the ORR and OER regions and the continuous changes in the Co oxidation state are observed with high time resolution. We theorize that carbon is enhancing the Co redox activity and as a result, the ORR and OER activities are likewise improved.

Abstract Image

碳对Ba0氧化态动态变化的影响。5 sr0。5 co0。8 fe0。2O3‐δ钙钛矿在氧还原和析出反应中的催化作用
碳经常用作催化剂层中的导电添加剂,以提高导电性和催化活性。然而,向钙钛矿中添加碳对氧还原(ORR)和析氧(OER)反应的影响是复杂的。在这项工作中,钙钛矿Ba复合材料
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信