{"title":"A spacecraft attitude manoeuvre planning algorithm based on improved policy gradient reinforcement learning","authors":"Bing Hua, Shenggang Sun, Yunhua Wu, Zhiming Chen","doi":"10.1017/S0373463321000813","DOIUrl":null,"url":null,"abstract":"Abstract To solve the problem of spacecraft attitude manoeuvre planning under dynamic multiple mandatory pointing constraints and prohibited pointing constraints, a systematic attitude manoeuvre planning approach is proposed that is based on improved policy gradient reinforcement learning. This paper presents a succinct model of dynamic multiple constraints that is similar to a real situation faced by an in-orbit spacecraft. By introducing return baseline and adaptive policy exploration methods, the proposed method overcomes issues such as large variances and slow convergence rates. Concurrently, the required computation time of the proposed method is markedly reduced. Using the proposed method, the near optimal path of the attitude manoeuvre can be determined, making the method suitable for the control of micro spacecraft. Simulation results demonstrate that the planning results fully satisfy all constraints, including six prohibited pointing constraints and two mandatory pointing constraints. The spacecraft also maintains high orientation accuracy to the Earth and Sun during all attitude manoeuvres.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0373463321000813","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract To solve the problem of spacecraft attitude manoeuvre planning under dynamic multiple mandatory pointing constraints and prohibited pointing constraints, a systematic attitude manoeuvre planning approach is proposed that is based on improved policy gradient reinforcement learning. This paper presents a succinct model of dynamic multiple constraints that is similar to a real situation faced by an in-orbit spacecraft. By introducing return baseline and adaptive policy exploration methods, the proposed method overcomes issues such as large variances and slow convergence rates. Concurrently, the required computation time of the proposed method is markedly reduced. Using the proposed method, the near optimal path of the attitude manoeuvre can be determined, making the method suitable for the control of micro spacecraft. Simulation results demonstrate that the planning results fully satisfy all constraints, including six prohibited pointing constraints and two mandatory pointing constraints. The spacecraft also maintains high orientation accuracy to the Earth and Sun during all attitude manoeuvres.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.