H. Tlili, Anis Elaoud, N. Asses, K. Horchani-Naifer, Mounir Ferhi, G. Goya
{"title":"Reduction of Oxidizable Pollutants in Waste Water from the Wadi El Bey River Basin Using Magnetic Nanoparticles as Removal Agents","authors":"H. Tlili, Anis Elaoud, N. Asses, K. Horchani-Naifer, Mounir Ferhi, G. Goya","doi":"10.3390/magnetochemistry9060157","DOIUrl":null,"url":null,"abstract":"Many of the current strategies for removing pollutants from water are based on nanomaterials and nanotechnology. Lower values of Biological Oxygen Demand (BOD5) and Chemical Oxygen Demand (COD) in water results in reduction in the amount of oxidizable pollutants. We present a study on the reduction of COD and BOD5 in water from Wadi El Bey River (Tunisia), using magnetite nanoparticles (MNPs) and magnetic fields. The COD and BOD5 removal reached values higher than 50% after 60 min, with optimum efficiency at pH values of ≈8 and for MNPs concentrations of 1 g/L. The use of a permanent magnetic field (0.33 T) showed an increase of COD and BOD5 removal from 61% to 76% and from 63% to 78%, respectively. This enhancement is discussed in terms of the MNPs coagulation induced by the magnetic field and the adsorption of ionic species onto the MNPs surface due to Fe3O4 affinity.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry9060157","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Many of the current strategies for removing pollutants from water are based on nanomaterials and nanotechnology. Lower values of Biological Oxygen Demand (BOD5) and Chemical Oxygen Demand (COD) in water results in reduction in the amount of oxidizable pollutants. We present a study on the reduction of COD and BOD5 in water from Wadi El Bey River (Tunisia), using magnetite nanoparticles (MNPs) and magnetic fields. The COD and BOD5 removal reached values higher than 50% after 60 min, with optimum efficiency at pH values of ≈8 and for MNPs concentrations of 1 g/L. The use of a permanent magnetic field (0.33 T) showed an increase of COD and BOD5 removal from 61% to 76% and from 63% to 78%, respectively. This enhancement is discussed in terms of the MNPs coagulation induced by the magnetic field and the adsorption of ionic species onto the MNPs surface due to Fe3O4 affinity.
期刊介绍:
Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.