Deborah Cecilia Navarro Morales, E. Palenque, Jorge Deheza Justiniano
{"title":"TAKE-OFF HIP EXTENSION ANGLE INFLUENCE ON THE TUCKED BACK SOMERSAULT PERFORMANCE","authors":"Deborah Cecilia Navarro Morales, E. Palenque, Jorge Deheza Justiniano","doi":"10.52165/sgj.13.2.203-209","DOIUrl":null,"url":null,"abstract":"Back somersault is a basic element of gymnastics; its performance is strongly influenced by the take-off phase. The present work aimed to study how hip extension in the take-off of the tucked back somersault influences the velocity of rotation and the height of the somersault. To this end, we recorded a total of 60 somersaults by 4 gymnasts (i.e., 15 somersaults each). There were three groups of somersaults based on the instructions that were given to the gymnasts: no specific instruction, somersault as high as possible and rotate as fast as possible. The records were then analyzed in order to quantify the following variables: maximal height of the mass center and maximal body angular velocity during somersault, the hip angle and the knee angle at the take-off. Gymnasts seemed to be inclined to bend their knees rather than extend their hips in order to carry out the instruction.","PeriodicalId":44084,"journal":{"name":"Science of Gymnastics Journal","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Gymnastics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52165/sgj.13.2.203-209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Back somersault is a basic element of gymnastics; its performance is strongly influenced by the take-off phase. The present work aimed to study how hip extension in the take-off of the tucked back somersault influences the velocity of rotation and the height of the somersault. To this end, we recorded a total of 60 somersaults by 4 gymnasts (i.e., 15 somersaults each). There were three groups of somersaults based on the instructions that were given to the gymnasts: no specific instruction, somersault as high as possible and rotate as fast as possible. The records were then analyzed in order to quantify the following variables: maximal height of the mass center and maximal body angular velocity during somersault, the hip angle and the knee angle at the take-off. Gymnasts seemed to be inclined to bend their knees rather than extend their hips in order to carry out the instruction.