Modelling Temporality in Person- and Variable-Centred Approaches

IF 2.9 Q1 EDUCATION & EDUCATIONAL RESEARCH
Dirk T. Tempelaar, B. Rienties, B. Giesbers, Quan Nguyen
{"title":"Modelling Temporality in Person- and Variable-Centred Approaches","authors":"Dirk T. Tempelaar, B. Rienties, B. Giesbers, Quan Nguyen","doi":"10.18608/jla.2023.7841","DOIUrl":null,"url":null,"abstract":"Learning analytics needs to pay more attention to the temporal aspect of learning processes, especially in self-regulated learning (SRL) research. In doing so, learning analytics models should incorporate both the duration and frequency of learning activities, the passage of time, and the temporal order of learning activities. However, where this exhortation is widely supported, there is less agreement on its consequences. Does paying tribute to temporal aspects of learning processes necessarily imply that event-based models are to replace variable-based models, and analytic discovery methods substitute traditional statistical methods? We do not necessarily require such a paradigm shift to give temporal aspects their position. First, temporal aspects can be integrated into variable-based models that apply statistical methods by carefully choosing appropriate time windows and granularity levels. Second, in addressing temporality in learning analytic models that describe authentic learning settings, heterogeneity is of crucial importance in both variable- and event-based models. Variable-based person-centred modelling, where a heterogeneous sample is split into homogeneous subsamples, is suggested as a solution. Our conjecture is illustrated by an application of dispositional learning analytics, describing authentic learning processes over an eight-week full module of 2,360 students.","PeriodicalId":36754,"journal":{"name":"Journal of Learning Analytics","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Learning Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18608/jla.2023.7841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

Learning analytics needs to pay more attention to the temporal aspect of learning processes, especially in self-regulated learning (SRL) research. In doing so, learning analytics models should incorporate both the duration and frequency of learning activities, the passage of time, and the temporal order of learning activities. However, where this exhortation is widely supported, there is less agreement on its consequences. Does paying tribute to temporal aspects of learning processes necessarily imply that event-based models are to replace variable-based models, and analytic discovery methods substitute traditional statistical methods? We do not necessarily require such a paradigm shift to give temporal aspects their position. First, temporal aspects can be integrated into variable-based models that apply statistical methods by carefully choosing appropriate time windows and granularity levels. Second, in addressing temporality in learning analytic models that describe authentic learning settings, heterogeneity is of crucial importance in both variable- and event-based models. Variable-based person-centred modelling, where a heterogeneous sample is split into homogeneous subsamples, is suggested as a solution. Our conjecture is illustrated by an application of dispositional learning analytics, describing authentic learning processes over an eight-week full module of 2,360 students.
以人为中心和变量为中心的临时性建模方法
学习分析需要更多地关注学习过程的时间方面,特别是在自我调节学习(SRL)研究中。在这样做的过程中,学习分析模型应该包括学习活动的持续时间和频率、时间的流逝以及学习活动的时间顺序。然而,在这种劝告得到广泛支持的地方,人们对其后果的看法却不太一致。关注学习过程的时间方面是否意味着基于事件的模型将取代基于变量的模型,分析发现方法将取代传统的统计方法?我们不一定需要这样的范式转变来给予时间方面它们的位置。首先,时间方面可以集成到基于变量的模型中,该模型通过仔细选择适当的时间窗口和粒度级别来应用统计方法。其次,在描述真实学习环境的学习分析模型中,异质性在基于变量和基于事件的模型中都至关重要。建议将基于变量的以人为中心的建模作为一种解决方案,将异质样本拆分为同质子样本。我们的猜想通过应用倾向性学习分析来说明,该分析描述了2360名学生在八周的完整模块中的真实学习过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Learning Analytics
Journal of Learning Analytics Social Sciences-Education
CiteScore
7.40
自引率
5.10%
发文量
25
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信