Analysis of Rain Drop Size Distribution to Elucidate the Precipitation Process using a Cloud Microphysics Conceptual Model and In Situ Measurement

IF 2.2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Joo Wan Cha, Hae Jung Koo, Bu-Yo Kim, Belorid Miloslav, Hyun Jun Hwang, Min Hoo Kim, Ki-Ho Chang, Yong Hee Lee
{"title":"Analysis of Rain Drop Size Distribution to Elucidate the Precipitation Process using a Cloud Microphysics Conceptual Model and In Situ Measurement","authors":"Joo Wan Cha,&nbsp;Hae Jung Koo,&nbsp;Bu-Yo Kim,&nbsp;Belorid Miloslav,&nbsp;Hyun Jun Hwang,&nbsp;Min Hoo Kim,&nbsp;Ki-Ho Chang,&nbsp;Yong Hee Lee","doi":"10.1007/s13143-022-00299-w","DOIUrl":null,"url":null,"abstract":"<div><p>\nRaindrop size distribution (DSD) is an important parameter in rainfall research and can be used for quantitative precipitation estimation (QPE) in meteorology and hydrology. DSD also improves the understanding of the uncertainty of cloud microphysical processes (CMPs) such as ice-based and warm rain growth during climate change. Changes in CMPs impact the generation of precipitation. However, the estimation of CMPs based on in situ observation is difficult because of the complexity of microphysics processes, and most previous studies on the CMP involved approximations to predict the types of microphysical processes affecting precipitation generation based on in situ observations performed in real-time. Therefore, we developed a simple method for understanding the CMPs of precipitation generation using a conceptual model of CMPs and in situ observation DSD data. We employed previously observed DSD parameters and a CMP conceptual model of the DSD observation-based microphysical process. As case studies, we applied DSD observation data obtained in Korea and East Asia to estimate the CMPs. For example, the major CMP of megacities was vapor deposition in Beijing (&lt; 1 mm h<sup>−1</sup>) and Seoul (&lt; 5 mm h<sup>−1</sup>), as the strong updraft of the urban heat island effect in megacities results in increased liquid water content, leading to the formation of large number of supersaturated clouds at higher altitudes.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"59 2","pages":"257 - 269"},"PeriodicalIF":2.2000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-022-00299-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s13143-022-00299-w","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Raindrop size distribution (DSD) is an important parameter in rainfall research and can be used for quantitative precipitation estimation (QPE) in meteorology and hydrology. DSD also improves the understanding of the uncertainty of cloud microphysical processes (CMPs) such as ice-based and warm rain growth during climate change. Changes in CMPs impact the generation of precipitation. However, the estimation of CMPs based on in situ observation is difficult because of the complexity of microphysics processes, and most previous studies on the CMP involved approximations to predict the types of microphysical processes affecting precipitation generation based on in situ observations performed in real-time. Therefore, we developed a simple method for understanding the CMPs of precipitation generation using a conceptual model of CMPs and in situ observation DSD data. We employed previously observed DSD parameters and a CMP conceptual model of the DSD observation-based microphysical process. As case studies, we applied DSD observation data obtained in Korea and East Asia to estimate the CMPs. For example, the major CMP of megacities was vapor deposition in Beijing (< 1 mm h−1) and Seoul (< 5 mm h−1), as the strong updraft of the urban heat island effect in megacities results in increased liquid water content, leading to the formation of large number of supersaturated clouds at higher altitudes.

Abstract Image

利用云微物理概念模型和现场测量分析降水过程中的雨滴大小分布
雨滴粒径分布(DSD)是降雨研究中的一个重要参数,可用于气象和水文领域的降水定量估算。DSD还提高了对云微物理过程(cmp)的不确定性的理解,如气候变化期间冰基和暖雨的生长。cmp的变化影响降水的产生。然而,由于微物理过程的复杂性,基于原位观测的CMP估算存在一定的困难,以往关于CMP的研究大多是基于实时的原位观测来近似预测影响降水生成的微物理过程类型。因此,我们开发了一种简单的方法,利用cmp的概念模型和原位观测DSD数据来理解降水产生的cmp。我们采用先前观测到的DSD参数和基于DSD观测的微物理过程的CMP概念模型。作为案例研究,我们利用在韩国和东亚获得的DSD观测数据来估计cmp。例如,特大城市的主要CMP是北京(< 1 mm h−1)和首尔(< 5 mm h−1)的气相沉积,这是由于特大城市强烈的城市热岛效应的上升气流导致液态水含量增加,导致高海拔地区形成大量过饱和云。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asia-Pacific Journal of Atmospheric Sciences
Asia-Pacific Journal of Atmospheric Sciences 地学-气象与大气科学
CiteScore
5.50
自引率
4.30%
发文量
34
审稿时长
>12 weeks
期刊介绍: The Asia-Pacific Journal of Atmospheric Sciences (APJAS) is an international journal of the Korean Meteorological Society (KMS), published fully in English. It has started from 2008 by succeeding the KMS'' former journal, the Journal of the Korean Meteorological Society (JKMS), which published a total of 47 volumes as of 2011, in its time-honored tradition since 1965. Since 2008, the APJAS is included in the journal list of Thomson Reuters’ SCIE (Science Citation Index Expanded) and also in SCOPUS, the Elsevier Bibliographic Database, indicating the increased awareness and quality of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信