Thermodynamic analysis of combined ORC-VCR system with recuperator and reheater

Q3 Environmental Science
K. Rawat, P. Bhandari, V. S. Bisht
{"title":"Thermodynamic analysis of combined ORC-VCR system with recuperator and reheater","authors":"K. Rawat, P. Bhandari, V. S. Bisht","doi":"10.32933/actainnovations.44.3","DOIUrl":null,"url":null,"abstract":"The trend of utilization of low-grade thermal energy gain huge attention due to increase in energy demand and depletion of conventional resources of energy. Low grade energy can be used in ORC-VCR cycle for refrigeration purpose. In the present work, to improve the performance a modified ORC-VCR cycle, recuperator and reheater are integrated in the cycle. The thermodynamic analysis of the modified system has been conducted with R600a, R600, R290 and R1270 as working fluids under various operating conditions viz. evaporator temperature, condenser temperature, boiler exit temperature. Different parameters evaluated to assess the performance are overall COP, mass flow rate per kW cooling capacity, expansion ratio and compression ratio. From the analysis, butane is found as a best choice for the modified ORC–VCR cycle. It was found that for the modified ORC-VCR cycle at boiler exit temperature of 90°C and condenser temperature 40°C has system COP of 0.5542 with butane, which is 7.1% and 18% higher than that of ORC-VCR cycle with recuperator and simple ORC-VCR cycle, respectively.","PeriodicalId":32240,"journal":{"name":"Acta Innovations","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Innovations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32933/actainnovations.44.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

The trend of utilization of low-grade thermal energy gain huge attention due to increase in energy demand and depletion of conventional resources of energy. Low grade energy can be used in ORC-VCR cycle for refrigeration purpose. In the present work, to improve the performance a modified ORC-VCR cycle, recuperator and reheater are integrated in the cycle. The thermodynamic analysis of the modified system has been conducted with R600a, R600, R290 and R1270 as working fluids under various operating conditions viz. evaporator temperature, condenser temperature, boiler exit temperature. Different parameters evaluated to assess the performance are overall COP, mass flow rate per kW cooling capacity, expansion ratio and compression ratio. From the analysis, butane is found as a best choice for the modified ORC–VCR cycle. It was found that for the modified ORC-VCR cycle at boiler exit temperature of 90°C and condenser temperature 40°C has system COP of 0.5542 with butane, which is 7.1% and 18% higher than that of ORC-VCR cycle with recuperator and simple ORC-VCR cycle, respectively.
带回热器和再热器的ORC-VCR组合系统热力学分析
由于能源需求的增加和常规能源资源的枯竭,低品位热能的利用趋势受到广泛关注。低品位能源可用于ORC-VCR循环制冷。在本工作中,为了提高ORC-VCR循环的性能,在循环中集成了回热器和再热器。以R600a、R600、R290、R1270为工质,在蒸发器温度、冷凝器温度、锅炉出口温度等不同工况下对改造后的系统进行了热力学分析。评估性能的参数包括总COP、每kW制冷量的质量流量、膨胀比和压缩比。通过分析,发现丁烷是改进ORC-VCR循环的最佳选择。结果表明,在锅炉出口温度为90℃、冷凝器温度为40℃的条件下,改进后的ORC-VCR循环的系统COP为0.5542,比带回热器的ORC-VCR循环和简单的ORC-VCR循环分别提高7.1%和18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Innovations
Acta Innovations Environmental Science-Environmental Engineering
CiteScore
3.90
自引率
0.00%
发文量
15
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信